BSM at Belle: $B \to K^* \ell^+ \ell^-$ and search for leptonic B decays

Stefano Villa, April 24, 2006

based on (i.e. same as) the talk given at
Les Rencontres de Physique de la Vallée d’Aoste,
La Thuile, Italy, March 10, 2006

NEW: updated with Belle result on $B \to \tau \nu_\tau$
Summary

• B physics at Belle
• The $B \to K^* \ell^+ \ell^-$ channel
 → forward-backward asymmetry
 → measurement of Wilson coefficients
• $B \to \ell \nu_{\ell}$ searches
• $B \to \ell^+ \ell^-$ searches
• Future prospects
• Conclusions

Notation:
• $B^0 \equiv B^0_d$
• Charge-conjugate modes always included
B physics at Belle

B production

BB pairs produced at KEKB in e^+e^- (3.5 GeV on 8 GeV) collisions at the $\gamma(4S)$ resonance. Collected so far more than 500 fb$^{-1}$

Charged tracks reconstruction/ID:
- electron ID: loss in CDC, shower shape in ECL and response of ACC; eff \geq 90%, π-misID rate \approx 0.1%
- muon ID: based on ECL and KLM; eff \geq 90%, π-misID rate \approx 1%
- K^\pm selected using ACC, TOF and CDC; eff \geq 90% and π-misID rate \approx 6%
- Other charged tracks identified as π^\pm

B signal selection:

Typically based on event shape variables with signal window defined using

\[M_{bc} = \sqrt{E_{beam}^2 - p_B^2} \ (\approx m_B) \]

and \[\Delta E = E_B - E_{beam} \ (\approx 0) \]
$B \rightarrow K^{*} \ell^{+} \ell^{-}$
$B \to K^{*} \ell^+ \ell^-$: a window on BSM physics

SM:
- $b \to s \ell^+ \ell^-$: FCNC process, forbidden at tree level
- at lowest order via electromagnetic penguin or box diagrams

Lepton pair yields useful observables for testing the theory:
- forward-backward asymmetry (A_{FB})
- invariant mass (q^2)

BSM:
Sensitive to new physics via insertion of heavy particles in the internal lines.
$B \rightarrow K^* \ell^+ \ell^-$: Wilson coefficients

New Physics at the one loop level can be described in terms of an effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

- $C_i(\mu)$ Wilson coefficients: effective strength of short distance interactions
- To leading order, only O_7, O_9 and O_{10} contribute to $b \rightarrow s \ell^+ \ell^-$
- C_i computed perturbatively up to NNLO: $C_i = A_i + \text{higher order terms}$
- The $B \rightarrow K^* \ell^+ \ell^-$ amplitude depends on A_7, A_9 and A_{10} under the assumption that higher order terms behave like in the SM.

SM VALUES: $A_7 = -0.330$, $A_9 = 4.069$, $A_{10} = -4.213$

Operators in \mathcal{H}_{eff}

\[O_1 = \langle \bar{s}_\alpha \gamma_\mu L \bar{c}_\beta \rangle \langle \bar{c}_\beta \gamma^\mu L b_\alpha \rangle, \]
\[O_2 = \langle \bar{s}_\alpha \gamma_\mu L c_\alpha \rangle \langle \bar{c}_\beta \gamma^\mu L b_\beta \rangle, \]
\[O_3 = \langle \bar{s}_\alpha \gamma_\mu L b_\alpha \rangle \sum_{q=u,d,s,c,b} \langle \bar{q}_\beta \gamma^\mu L q_\beta \rangle, \]
\[O_4 = \langle \bar{s}_\alpha \gamma_\mu L c_\beta \rangle \sum_{q=u,d,s,c,b} \langle \bar{q}_\beta \gamma^\mu L q_\alpha \rangle, \]
\[O_5 = \langle \bar{s}_\alpha \gamma_\mu L b_\alpha \rangle \sum_{q=u,d,s,c,b} \langle \bar{q}_\beta \gamma^\mu R q_\beta \rangle, \]
\[O_6 = \langle \bar{s}_\alpha \gamma_\mu L c_\beta \rangle \sum_{q=u,d,s,c,b} \langle \bar{q}_\beta \gamma^\mu R q_\alpha \rangle, \]
\[O_7 = \frac{e}{16\pi^2} \langle \bar{s}_\alpha \sigma_{\mu\nu} (m_s L + m_b R) b_\alpha \rangle F_{\mu\nu}, \]
\[O_8 = \frac{g}{16\pi^2} \langle \bar{s}_\alpha \sigma_{\mu\nu} (m_s L + m_b R) T_{\alpha\beta}^a b_\beta \rangle G^{a\mu\nu}, \]
\[O_9 = \frac{e^2}{16\pi} \langle \bar{s}_\alpha \gamma^\mu L b_\alpha \bar{\ell} \gamma_{\mu} \ell \rangle, \]
\[O_{10} = \frac{e^2}{16\pi} \langle \bar{s}_\alpha \gamma^\mu L b_\alpha \bar{\ell} \gamma_{\mu} \gamma_5 \ell \rangle, \]

- Electromagnetic operator
- Semileptonic vector
- Semileptonic axial-vector
Constraints on Wilson coefficients

The absolute value of C_7 is constrained by $B \to X_s \gamma$; constraints on C_9 and C_{10} (donut-shape) are derived from the $B \to X_s \ell^+\ell^-$ branching fractions.

To determine sign of C_7 and to measure C_9 and C_{10} need to look at the differential distributions in $B \to K^* \ell^+\ell^-$.

Allowed region at 90% CL, based on NNLO and experimental bounds on $B \to X_s \gamma$ and $B \to X_s \ell^+\ell^-$ Br's; $A_7 < 0$

SUSY Extended-MFV

SM:
Forward-backward asymmetry in $K^*\ell^+\ell^-$

\[A_{FB}(q^2) = \frac{\Gamma(q^2, \cos \theta_{B\ell^-} > 0) - \Gamma(q^2, \cos \theta_{B\ell^-} < 0)}{\Gamma(q^2, \cos \theta_{B\ell^-} > 0) + \Gamma(q^2, \cos \theta_{B\ell^-} < 0)} \]

- $\theta_{B\ell^-}$ ($\equiv \theta$): angle between B and ℓ^- in the dilepton rest frame
- A_{FB} is a function of q^2 of the dilepton system
- A_{FB} non-zero due to interference of vector (C_7, C_9) and axial vector (C_{10}) couplings

More generally, one can extract the coefficients by fitting the double-differential decay width:

\[d^2\Gamma / dq^2 \ d \cos \theta \]
B → K*ℓ⁺ℓ⁻ selection

- Dataset: 357 fb⁻¹ = 386M BB pairs
- Modes: $K^{*+} \rightarrow K^+ \pi^0$, $K_S \pi^+$; $K^{*0} \rightarrow K^+ \pi^-$
- lepton = e, μ
- Charmonium (J/ψ, $\psi(2S)$) veto
- Dominant background: BB with both B's decaying semileptonically: suppressed using E_{miss} and $\cos \theta_B$
- $B \rightarrow K \ell^+ \ell^-$ used as “null test”: $A_{FB} \approx 0$ in SM, small BSM

Signal yield: $N_{\text{sig}} = 114 \pm 13$

Consistent with Belle measurement (140fb⁻¹):

$\text{Br}(B \rightarrow K^* \ell^+ \ell^-) = (11.5^{+2.6}_{-2.4} \pm 0.8 \pm 0.2) \times 10^{-7}$

Extraction of A_{FB} and Wilson coeffs.

- Extract the ratio of Wilson coefficients A_9 / A_7, A_{10} / A_7 ($A_7 = A_7^{SM} = -0.330$) from an unbinned maximum likelihood fit on events in the signal window with a pdf including $g(q^2, \theta) = d^2 I / dq^2 \ d \cos \theta$.

- Several event categories:
 - signal + “cross feeds” from misreconstructed $B \rightarrow K^{(*)} \ell^+ \ell^-$ or other $b \rightarrow s \ell \ell$
 - 4 background sources – dominated by dilepton (80%)

A_{FB} simply obtained by integration:

$$A_{FB}(q^2) = \frac{\int_{-1}^{1} \text{sgn}(\cos \theta) g(q^2, \theta) \ d \cos \theta}{\int_{-1}^{1} g(q^2, \theta) \ d \cos \theta}$$

Null test: extract A_{FB} for $B \rightarrow K \ell^+ \ell^-$

$A_{FB}^{bkg-sub}(B \rightarrow K^{+} \ell \ell) = 0.09 \pm 0.14\text{ (stat.)}$

consistent with 0!
Fit results hep-ex/0603018 submitted to PRL

\[A_7 = -0.330; \quad A_{FB} > 0 \text{ at } 3.4\sigma \]

\[A_{bkg-sub}^{B\rightarrow K^*\ell\ell}(B) = 0.56 \pm 0.13 \text{ (stat.)} \]

Both \(A_7A_{10} \) and \(A_9A_{10} \) signs flipped excluded!

\[\frac{A_9}{A_7} = -15.3 \pm 3.4 \]

\[\frac{A_{10}}{A_7} = 10.3 \pm 5.2 \quad (A_7^{SM}) \]

\[-1401 < \frac{A_9A_{10}}{A_7^2} < -26.4 \quad (95\% \text{ CL, any } A_7) \]

SM:

\[\frac{A_9}{A_7} = -12.3, \]

\[\frac{A_{10}}{A_7} = 12.8. \]
Positive A_7 solution

Best fit for positive A_7 (non-SM like):

$$A_9/A_7 = -16.3^{+3.7}_{-5.7} \pm 1.4,$$
$$A_{10}/A_7 = 11.1^{+6.0}_{-3.9} \pm 2.4,$$

SM:

$$A_9/A_7 = -12.3,$$
$$A_{10}/A_7 = 12.8.$$
LEPTONIC B DECAYS
\[B^- \rightarrow \ell^- \bar{\nu}_\ell \]

SM:

\[
\mathcal{B}(B^- \rightarrow \ell^- \bar{\nu}) = \frac{G_F^2 m_B m^2_\ell}{8\pi} \left(1 - \frac{m^2_\ell}{m^2_B}\right)^2 f^2_B |V_{ub}|^2 \tau_B
\]

B lifetime

- \[\text{Br}(B \rightarrow \tau \nu_\tau) \approx 1 \times 10^{-4} \]
- Other leptons suppressed \(\sim (m_\ell)^2 \):
 - by 1/225 for \(B \rightarrow \mu \nu_\mu \), \(10^{-7} \) for \(B \rightarrow e \nu_e \)

**Direct Measurement of decay constant \(f_B \)!

BSM:

- MSSM (charged Higgs): can explore the \((M_H, \tan \beta)\) plane.
- Pati-Salam models: can set limit on the mass of LQ

Possible enhancements of BF in
$B^- \rightarrow e^- \overline{\nu}_e$ and $B^- \rightarrow \mu^- \overline{\nu}_\mu$

- One highly energetic lepton
- Charmonium veto
- Large missing E and p
- Signal window defined on ΔE and M_{bc} of the companion B
- Cut on lepton momentum in B rest frame

Belle results at 90% CL

$\text{Br}(B \rightarrow \mu \nu_\mu) < 2.0 \times 10^{-6}$ hep-ex/0408132, 140 fb$^{-1}$

$\text{Br}(B \rightarrow e \nu_e) < 5.4 \times 10^{-6}$ Belle-conf-0247, 60 fb$^{-1}$

update coming soon!
$B^- \rightarrow \tau^- \bar{\nu}_\tau$ NEW: submitted to PRL, hep-ex/0604018

- Reconstruct the companion B in exclusive $D^{(*)0}h^+$ and $D^{(*)0}D^{(*)+}_s$ channels to get a pure (55%) B^+B^- sample (6.8×10^5 evts)
- Reconstruct signal from remaining particles in the event
- Final selection based on remaining energy in ECL: $E_{ECL} \approx 0$ for signal

Dataset: 414 fb^{-1}
To validate the E_{ECL} cut, use control sample of double tagged events: B_{sig} substituted by $B \to D^{*0}\ell\nu$

FIT RESULT:

- signal
- background
- total
$B^- \rightarrow \tau^- \bar{\nu}_\tau$: results

\[
\begin{array}{cccccc}
N_{\text{obs}} & N_s & N_b & B(10^{-4}) & \Sigma \\
\hline
\mu^- \bar{\nu}_\mu \nu_\tau & 13 & 5.4^{+3.2}_{-2.2} & 9.1^{+0.2}_{-0.1} & 1.01^{+0.59}_{-0.41} & 2.3\sigma \\
e^- \bar{\nu}_e \nu_\tau & 12 & 3.9^{+3.5}_{-2.5} & 9.2^{+0.2}_{-0.1} & 0.79^{+0.71}_{-0.49} & 1.5\sigma \\
\pi^- \nu_\tau & 9 & 3.4^{+2.6}_{-1.6} & 4.0^{+0.2}_{-0.1} & 0.96^{+0.74}_{-0.46} & 1.9\sigma \\
\pi^- \pi^0 \nu_\tau & 11 & 6.2^{+3.9}_{-2.7} & 4.2^{+0.3}_{-0.1} & 1.23^{+0.77}_{-0.53} & 2.6\sigma \\
\pi^- \pi^+ \pi^- \nu_\tau & 9 & 3.1^{+3.1}_{-2.6} & 3.7^{+0.3}_{-0.2} & 2.99^{+3.01}_{-2.49} & 1.2\sigma \\
\hline
\text{Combined} & 54 & 21.2^{+6.7}_{-5.7} & 30.2^{+0.5}_{-0.4} & 1.06^{+0.34}_{-0.28} & 4.2\sigma \\
\end{array}
\]

BELLE result

$\text{Br}(B \rightarrow \tau \nu_\tau) = (1.06^{+0.34}_{-0.28} \text{ (stat)} ^{+0.18}_{-0.16} \text{ (syst)}) \times 10^{-4}$

$f_B = 0.176^{+0.028}_{-0.023} \text{ (stat)} ^{+0.020}_{-0.019} \text{ (syst)} \text{ GeV}$

obtained using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ (HFAG)

SM:

$\text{Br}(B \rightarrow \tau \nu_\tau) = (1.59 \pm 0.40) \times 10^{-4}$

$f_B = 0.216 \pm 0.022 \text{ GeV} \text{ (from lattice QCD)}$

First evidence of a purely leptonic B decay

First direct determination of f_B
$B^+ \rightarrow \tau^- \bar{\nu}_{\tau}$: constraints on BSM

Constraint on Charged Higgs (two Higgs doublet model, type II)

$$\mathcal{B}(B \rightarrow \tau \nu) = \mathcal{B}(B \rightarrow \tau \nu)_{SM} \times r_H$$

$$r_H = (1 - \frac{m_B^2}{m^2_{H}} \tan^2 \beta)^2 \rightarrow r_H = 0.67^{+0.29}_{-0.26}$$

$$\mathcal{B}(B \rightarrow \tau \nu) = (1.06^{+0.34}_{-0.28} \text{(stat)} + 0.18 \text{(syst)}) \times 10^{-4}$$

SM: $\mathcal{B}(B \rightarrow \tau \nu) = (1.59 \pm 0.40) \times 10^{-4}$

\[B^0 \rightarrow \ell^+ \ell^- \]

SM:
- Box or annihilation diagram
- \(\text{Br}(B^0 \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10} \)
- \(\text{Br}(B^0 \rightarrow e^+ e^-) = (2.3 \pm 0.3) \times 10^{-15} \)
- \(\text{Br}(B^0 \rightarrow \mu^+ e^-) \approx 0 \) (neutrino osc.)
- Helicity suppressed \(\sim (m_\ell)^2 \)

BSM:
- Enhancement of BF\((B^0 \rightarrow \mu^+ \mu^-, e^+ e^-) \) in high \(\tan \beta \) MSSM (2 orders of magnitude) and SUSY
- \(B^0 \rightarrow \mu^\pm e^\mp \) allowed in Pati-Salam (leptoquark) and SUSY models

BELLE results
- 90% CL limits based on 78 fb\(^{-1}\)
 - \(\text{Br}(B \rightarrow \mu^+ \mu^-) < 1.6 \times 10^{-7} \)
 - \(\text{Br}(B \rightarrow e^+ e^-) < 1.9 \times 10^{-7} \)
 - \(\text{Br}(B \rightarrow \mu^\pm e^\mp) < 1.7 \times 10^{-7} \)

Limit on the Pati-Salam LQ mass:
\[M_{LQ} > 46 \text{ TeV}/c^2 \] at 90% CL
Super Belle: expected performance

Goal: \(\mathcal{L} = 5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}; \) in 1 year \(\int \mathcal{L} = 5 \text{ ab}^{-1} \)

expected performance on \(B \rightarrow K^* \ell^+ \ell^- \)
with 1 year of data taking \(\) no syst. errors included

\[L = 5 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}; \]

\[\text{in 1 year } \int L = 5 \text{ ab}^{-1} \]

from \(A_{FB}(K^* \ell^+ \ell^-) \)

\[\Delta A_9 / A_9 \sim 11\% \]
\[\Delta A_{10} / A_{10} \sim 13\% \]

zero of \(A_{FB}(q^2) \) is very sensitive to BSM effects. Will be able to measure it.

A. Ishikawa at Lake Louise 2006
Conclusions

• Belle performed the **first measurement of Wilson Coefficients in** $B \to K^{*} \ell^{+} \ell^{-}$:
 - Integrated forward-backward asymmetry significantly > 0
 - First determination of sign of $A_9 A_{10}$
 - Results compatible with SM prediction and ruling out many BSM scenarios

• B leptonic decays set constraints on BSM parameter space
 - $M_H - \tan \beta$ in MSSM
 - M_{LQ} in Pati-Salam models
 - **First evidence of $B \to \tau \nu \tau$!**

• Still a lot to come from Belle and hopefully Super Belle!

but something else happened since la Thuile...
NEW! Cecilia was born!

\[m_C = 3650 \text{ g} \]
\[L_C = 53 \text{ cm} \]
\[t^0 = \text{Apr. 7, 22:26} \]
BACKUP SLIDES
Details of the fit

The Probability Density Function:

\[P(M_{bc}, q^2, \cos \theta; A_9/A_7, A_{10}/A_7) \]

\[= \frac{1}{N_{\text{sig}}} f_{\text{sig}} \epsilon_{\text{sig}}(q^2, \cos \theta) g(q^2, \cos \theta) \]

\[+ \frac{1}{N_{\text{CF}}} f_{\text{CF}} \epsilon_{\text{CF}}(q^2, \cos \theta) g(q^2, \cos \theta) \]

\[+ \frac{1}{N_{\text{IF}}} f_{\text{IF}} \epsilon_{\text{IF}}(q^2, \cos \theta) g(q^2, -\cos \theta) \]

\[+ (1 - f_{\text{sig}} - f_{\text{CF}} - f_{\text{IF}} - f_{K^*h h} - f_{\psi X_s}) \times \]

\[\left\{ (f_{K^*\ell h} \mathcal{P}_{K^*\ell h}(q^2, \cos \theta) + (1 - f_{K^*\ell h}) \mathcal{P}_{\text{dil}}(q^2, \cos \theta) \right\} \]

\[+ f_{K^*h h} \mathcal{P}_{K^*h h}(q^2, \cos \theta) + f_{\psi X_s} \mathcal{P}_{\psi X_s}(q^2, \cos \theta). \]

\(\epsilon \): efficiency functions, estimated from data and MC

\(f \): event by event signal and background probability, from \(M_{bc} \) fit
Systematic uncertainties

<table>
<thead>
<tr>
<th>source</th>
<th>negative A_7 solution</th>
<th>positive A_7 solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_9/A_7</td>
<td>A_{10}/A_7</td>
</tr>
<tr>
<td>A_7</td>
<td>+0.29 -0.03</td>
<td>+0.01 -0.03</td>
</tr>
<tr>
<td>m_b</td>
<td>+0.69 -0.68</td>
<td>+0.45 -0.46</td>
</tr>
<tr>
<td>Form factor model</td>
<td>± 0.66</td>
<td>± 1.72</td>
</tr>
<tr>
<td>q^2 resolution</td>
<td>± 0.28</td>
<td>± 0.39</td>
</tr>
<tr>
<td>efficiency</td>
<td>± 0.08</td>
<td>± 0.03</td>
</tr>
<tr>
<td>signal fraction</td>
<td>+0.43 -0.47</td>
<td>+0.22 -0.33</td>
</tr>
<tr>
<td>total</td>
<td>+1.12-1.10</td>
<td>+1.83-1.84</td>
</tr>
</tbody>
</table>