B_s^0 \rightarrow J/\psi \eta \text{ decays and sensitivity to the } B_s^0 \text{ mixing phase at LHCb}

Benjamin Carron

Monday Seminar - January 30 2006

Mixing and CP violation

The LHCb experiment

Selection of the B_s^0 \rightarrow J/\psi \eta \text{ decays}

Sensitivity to the B_s^0 \text{ mixing phase}

Summary and conclusion
CP violation and $\bar{b} \rightarrow \bar{c}c\bar{s}$ transitions

- B_s^0 decays into CP self-conjugate final states caused by $\bar{b} \rightarrow \bar{c}c\bar{s}$ quark-level transitions
 - $B_s^0 \rightarrow J/\psi \phi$: admixture of CP eigenstates ($\eta_{J/\psi\phi} = +1, -1, +1$)
 - $B_s^0 \rightarrow \eta_c \phi$, $B_s^0 \rightarrow J/\psi \eta^{(')}$: pure CP-even eigenstates

Dominated by only one tree CKM phase $\phi_D \equiv -\arg[V_{cb}^*V_{cs}]$ (penguins suppressed \rightarrow no direct CP violation); small effect of indirect CP violation can be neglected ($\rightarrow |p/q| = 1$)

- “Mixing-induced CP violation” phase mismatch $\phi_{CKM} = \phi_s - 2\phi_D \approx \phi_s \neq 0, \pi$

\[\begin{array}{ccc}
 b & V_{tb} & t \\
 \bar{B}_s^0 & W & V_{ts}^* \\
 \bar{s} & V_{ts}^* & V_{tb} \\
 \end{array} \quad \begin{array}{ccc}
 s & V_{cs} \\
 B_s^0 & W^+ & c \\
 \bar{b} & V_{cb}^* \\
 \end{array} \]

$\phi, \eta^{(')}$

$J/\psi, \eta_c$

\rightarrow CP-asymmetry directly measures the weak mixing phase $\phi_s \equiv 2\arg[V_{ts}^*V_{tb}]$

- $\phi_s \approx -2\chi \equiv -2\arg\left[-\frac{V_{cb}^*V_{cs}^*}{V_{tb}^*V_{ts}^*}\right] \leftrightarrow$ strange counterpart of $\sin (2\beta)$ measurement for B_d^0 ($\phi_d \approx 2\beta$)

- In the Standard Model, $\phi_s \approx -2\lambda^2 \eta \sim \mathcal{O}(-0.04 \text{ rad})$ expected to be small

\Rightarrow B_s^0 system represents a prime candidate for the discovery of New Physics
The LHCb experiment

- **LHC environment**
 - $p - p$ collisions at 14 TeV
 - $\mathcal{L}_{\text{LHC}} = 10^{34}$ cm$^{-2}$s$^{-1}$
 - $b\bar{b}$ both forward or backward in the beam direction

- **LHCb detector**
 - $\mathcal{L}_{\text{LHCb}}^{\text{av}} = 2 \cdot 10^{32}$ cm$^{-2}$s$^{-1}$
 - Good resolutions
 - ~ 12 MeV/c^2 on m_B
 - ~ 40 fs on proper time
 - RICH: K/π separation
 - High P_T tracks and high IP trigger
1. What is LHCb’s ability to reconstruct the $B^0_s \to J/\psi \eta$ decay channels?

- $J/\psi \to \mu^+ \mu^-$ → clear signature
 → high trigger efficiency

- $\eta \to \gamma \gamma$ → difficult to reconstruct (bad γ momentum resolution / high multiplicity)
 → BR($\eta \to \gamma \gamma$): $(39.4 \pm 0.3)\%$

- $\eta \to \pi^+ \pi^- \pi^0$ → easier reconstruction (2 charged tracks) but with $\pi^0 \to \gamma \gamma$
 → BR($\eta \to \pi^+ \pi^- \pi^0$): $(22.6 \pm 0.4)\%$

- Offline selection with full Monte Carlo simulated data

- After the selection, application of a Kalman Filter fit
 → Refines the cascade fitters, with better propagation of P_γ errors by recursive fit
 → Performs mass constrained fits on intermediate particles
After a loose preselection
- Re-normalized to have the same maximum for both distributions

\[
B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)
\]

\[
B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)
\]

\(P_T\) of the less energetic photon

\(P_T\) of the neutral pion

Associated signal – background candidates – Final cut

Huge amount of photon pairs (∼ 22 photons per event)
→ Need very tight cuts to remove the background combinations
Significance of a variable: its value divided by its error ($S_x = x/\sigma_x$)

→ Very important to remove prompt J/ψ contributions

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$

Associated signal – background candidates – Final cut
$B_s^0 \rightarrow J/\psi \eta$ selection Cuts (DaVinci v12r12)

<table>
<thead>
<tr>
<th>Cuts</th>
<th>$B_s^0 \rightarrow J/\psi \eta$</th>
<th>$B_s^0 \rightarrow J/\psi \eta$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\eta \rightarrow \gamma\gamma$</td>
<td>$\eta \rightarrow \pi^+\pi^-\pi^0$</td>
</tr>
<tr>
<td>$\Delta\ln L_{\mu\pi} (\mu^+, \mu^-)$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$P_T (\mu^+, \mu^-)$ [MeV/c2]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$IP/\sigma_{IP} (\mu^+, \mu^-)$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\chi^2 (J/\psi)$</td>
<td>$<$</td>
<td>$<$</td>
</tr>
<tr>
<td>$P_T (J/\psi)$ [MeV/c]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$IP/\sigma_{IP} (J/\psi)$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\delta(m) (J/\psi)$ [MeV/c2]</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>$P_T (\gamma)$ [MeV/c]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$P_T (\pi^{\pm})$ [MeV/c]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$IP/\sigma_{IP} (\pi^{\pm})$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$P_T (\pi^0)$ [MeV/c]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\delta(m) (\pi^0)$ [MeV/c2]</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>$P_T (\eta)$ [MeV/c]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\delta(m) (\eta)$ [MeV/c2]</td>
<td>\pm</td>
<td>\pm</td>
</tr>
<tr>
<td>$\chi^2 (B_s^0)$</td>
<td>$<$</td>
<td>$<$</td>
</tr>
<tr>
<td>$p (B_s^0)$ [MeV/c2]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>IPS (B_s^0)</td>
<td>$<$</td>
<td>$<$</td>
</tr>
<tr>
<td>FDS (B_s^0)</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>FD (B_s^0) [mm]</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\cos \theta_{Lp}$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>$\delta(m) (B_s^0)$ [MeV/c2]</td>
<td>\pm</td>
<td>\pm</td>
</tr>
</tbody>
</table>

Parameters

- μ^+, μ^- selection
- J/ψ selection
- γ selection
- π^+, π^- selection
- π^0 selection
- η selection
- B_s^0 selection

January 30 2006

Monday Seminar − 7

Benjamin Carron
B_s^0 mass resolutions with Kalman Filter fit

Single Gaussian fits on associated candidates

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$

- $\sigma = (33.6 \pm 0.7)$ MeV/c^2
- $\mu = (5369.4 \pm 0.8)$ MeV/c^2
- χ^2/ndf = 68.8/36

Increased resolution: $53 \rightarrow 34$ MeV/c^2

No biases in the mean values (present before the Kalman Filter fit)

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$

- $\sigma = (20.0 \pm 0.7)$ MeV/c^2
- $\mu = (5370.9 \pm 0.6)$ MeV/c^2
- χ^2/ndf = 177.5/42

Increased resolution: $45 \rightarrow 20$ MeV/c^2
Lifetime measurements \((\tau_{B_s^0}^{true} = 1.472 \text{ ps})\)

\[B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)\]

- Lifetime estimated by a \(\chi^2\) fit
 \[c \cdot t = m_{B_s^0} \cdot \frac{\vec{p}_{B_s^0} \cdot \vec{L}_{B_s^0}}{|\vec{p}_{B_s^0}|^2}\]
 - \(m_{B_s^0}\): mass of the reconstructed \(B_s^0\)
 - \(\vec{p}_{B_s^0}\): momentum of the reconstructed \(B_s^0\)
 - \(\vec{L}_{B_s^0}\): distance between creation and decay vertex of the reconstructed \(B_s^0\)

- Low lifetime distortion
 - Due to selection cuts (flight distance, ...)
 - Short lived \(B_s^0\) killed

\[\Rightarrow \text{Exponential} \cdot \text{Distortion}\]

\[\rightarrow \text{The distortion is called “acceptance”}\]

\(\star\) \(B_s^0\) lifetime fitted by:

\(\text{Exponential} \cdot \text{Acceptance}\)
Lifetime resolution with Kalman Filter fit

\[B_s^0 \rightarrow J/\psi (\mu^+ \mu^-) \eta (\gamma \gamma) \]

\[B_s^0 \rightarrow J/\psi (\mu^+ \mu^-) \eta (\pi^+ \pi^- \pi^0) \]

\[\sigma = (35.7 \pm 0.8) \text{ fs} \]
\[\mu = (1.5 \pm 0.8) \text{ fs} \]

Single Gaussian fit on associated candidates

Increased resolution: 121 → 36 fs

\[\sigma = (32.9 \pm 0.9) \text{ fs} \]
\[\mu = (1.1 \pm 0.9) \text{ fs} \]

Increased resolution: 68 → 33 fs
B_s^0 proper time pulls after Kalman Filter fit

★ Pull: residual divided by its error $(x_{\text{rec}} - x_{\text{true}})/\sigma_x \longrightarrow \text{normal Gaussian} (\sigma = 1, \mu = 0)$

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$

- $\sigma = (1.22 \pm 0.02)$
- $\mu = (0.06 \pm 0.03)$
- $\chi^2/\text{ndf}=27.9/36$

$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$

- $\sigma = (1.32 \pm 0.03)$
- $\mu = (0.07 \pm 0.04)$
- $\chi^2/\text{ndf}=54.7/37$

⇒ Large under-estimation of the errors (22% and 32%)

~ 15% under-estimation present in all analyses \(\longrightarrow\) reconstruction problem
Acceptance to no cuts:

\[\varepsilon_t = \text{accamp} \cdot \frac{(\text{accslope} \cdot t_{MC})^3}{1 + (\text{accslope} \cdot t_{MC})^3}. \]

\[B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma) \]

\[B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0) \]

\(\text{acc}_{\text{slope}} = (1.86 \pm 0.06) \text{ps}^{-1} \)

\(\chi^2/\text{ndf} = 6.1/9 \)

\(\text{acc}_{\text{slope}} = (1.54 \pm 0.05) \text{ps}^{-1} \)

\(\chi^2/\text{ndf} = 4.6/8 \)

\(\text{acc}_{\text{slope}} \) under-estimated lifetime errors and acceptance function

→ Inputs of model for the sensitivity study
Selection efficiencies and yields

- Selection optimization determined comparing associated signal to $b\bar{b}$ background distributions
- $B_s^0 \rightarrow J/\psi \eta$ total selection efficiency

<table>
<thead>
<tr>
<th>$B_s^0 \rightarrow J/\psi \eta$</th>
<th>Factors (in%) forming ε_{tot} (in%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ε_{det}</td>
</tr>
<tr>
<td>$\eta \rightarrow \gamma \gamma$</td>
<td>10.02 ± 0.30</td>
</tr>
<tr>
<td>$\eta \rightarrow \pi^+ \pi^- \pi^0$</td>
<td>7.41 ± 0.26</td>
</tr>
</tbody>
</table>

- Untagged signal yields for 2 fb^{-1} (one year at $L_{\text{LHCb}}^{\text{av}}$)

<table>
<thead>
<tr>
<th>$B_s^0 \rightarrow J/\psi \eta$ (θ_P)</th>
<th>$\text{BR} \ (10^{-6})$</th>
<th>$N^{2 fb^{-1}}_{\text{phys}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta \rightarrow \gamma \gamma \quad (-15^\circ)$</td>
<td>10.5 ± 4.3</td>
<td>$8'900 \pm 4'000$</td>
</tr>
<tr>
<td>$\eta \rightarrow \pi^+ \pi^- \pi^0 \quad (-15^\circ)$</td>
<td>6.1 ± 2.6</td>
<td>$3'100 \pm 1'400$</td>
</tr>
</tbody>
</table>

- η mixing angle θ_P: angle between ground-state of pseudoscalar octet η_8 and pseudoscalar singlet η_1, $\theta_P \in [-20^\circ; -10^\circ]$

\[\eta = \eta_8 \cos \theta_P - \eta_1 \sin \theta_P \]
Flavor tagging

★ When a signal B is reconstructed, we need to know its initial flavor ⇒ flavor tagging

- **opposite-side** tagging: identify the b-hadron containing the other b (lepton, kaon, vertex tag)

- **same-side** tagging: use the companion of the b quark in the signal B (kaon tag)

★ The tagging procedure does not always give an answer: tagging efficiency ε_{tag}

★ Even if there is a tag, our identification could be incorrect: wrong tag fraction ω

⇒ The tagging will dilute the theoretical decay asymmetry $A^{th}_{\text{CP}}(t)$ between the \bar{B}_s^0 and the B_s^0 by a factor D:

$$A^{obs}_{\text{CP}}(t) = D \cdot A^{th}_{\text{CP}}(t)$$

which reduces to $D = (1 - 2\omega)$ for a perfect resolution and no background
Tagging and trigger efficiencies

Tagging efficiency ε_{tag} and wrong tag fraction ω

<table>
<thead>
<tr>
<th>$\mathcal{B}_s^0 \to J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$ after HLT</th>
<th>$\mathcal{B}_s^0 \to J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$ after HLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{tag} [%]</td>
<td>62.7 ± 1.2</td>
</tr>
<tr>
<td>ω [%]</td>
<td>35.2 ± 1.5</td>
</tr>
</tbody>
</table>

→ For comparison: $\mathcal{B}_s^0 \to \eta_c \phi$ after HLT: $\varepsilon_{\text{tag}} \sim 66.4\%$ and $\omega \sim 31.2\%$

Relative efficiency of each trigger ($\varepsilon_{\text{trg/sel}} = \varepsilon_{L0/\text{sel}} \times \varepsilon_{L1/L0} \times \varepsilon_{\text{HLT/L1}}$)

<table>
<thead>
<tr>
<th>$\mathcal{B}_s^0 \to J/\psi \eta$</th>
<th>$\varepsilon_{L0/\text{sel}}$</th>
<th>$\varepsilon_{L1/L0}$</th>
<th>$\varepsilon_{\text{HLT/L1}}$</th>
<th>$\varepsilon_{\text{HLT/sel}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta \to \gamma \gamma$</td>
<td>97.0 ± 0.4</td>
<td>86.5 ± 0.8</td>
<td>91.2 ± 0.7</td>
<td>76.5 ± 0.9</td>
</tr>
<tr>
<td>$\eta \to \pi^+ \pi^- \pi^0$</td>
<td>94.4 ± 0.6</td>
<td>93.5 ± 0.7</td>
<td>90.2 ± 0.8</td>
<td>79.6 ± 1.0</td>
</tr>
</tbody>
</table>

Muon and J/ψ: very efficient triggers!

→ For comparison: $\mathcal{B}_s^0 \to \eta_c \phi$ after HLT: $\varepsilon_{\text{HLT/sel}} \sim 30\%$
Various background contributions

- **Minimum bias events:** high statistics ($\sim 2 \cdot 10^{14}$ per year)
 → Killed by appropriate selection cuts

- **Inclusive $b\bar{b}$ events:** high statistics ($\sim 10^{12}$ per year) and displaced vertices
 → Main source of background for B decays

- **Inclusive $H_b \to J/\psi X$ events:** presence of a J/ψ and displaced vertices
 → Most polluting background for the $B_s^0 \to J/\psi \eta$ channels

- **Prompt J/ψ:** large production yield ($\sim 0.4 \cdot 10^{12}$ per year) and presence of a J/ψ
 → Killed by appropriate selection cuts (flight distance, ...)

\star $b\bar{b}$ events (± 600 MeV/c2) – Central value and 90% confidence level upper limit ($\theta_p = -15^\circ$)

<table>
<thead>
<tr>
<th>Decays</th>
<th>Selected events on $\sim 30M$</th>
<th>B/S Before triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \to J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$</td>
<td>16</td>
<td>2.2 ± 1.1</td>
</tr>
<tr>
<td>$B_s^0 \to J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$</td>
<td>3</td>
<td>< 3.3</td>
</tr>
</tbody>
</table>

\rightarrow All selected events of $H_b \to J/\psi X$ category
1. What is LHCb's ability to reconstruct the $B_s^0 \rightarrow J/\psi \eta$ decay channels?

- $J/\psi \rightarrow \mu^+ \mu^-$
- $\eta \rightarrow \gamma \gamma$
- $\eta \rightarrow \pi^+ \pi^- \pi^0$

\Rightarrow Good reconstruction expected

2. What is LHCb's sensitivity to ϕ_s?

- using decays to pure CP eigenstates such as $B_s^0 \rightarrow J/\psi \eta^{(')}$, $B_s^0 \rightarrow \eta_c \phi$
- using $B_s^0 \rightarrow J/\psi \phi$, “The golden decay mode” but admixture of CP eigenstates

\Rightarrow can the pure CP eigenstates help $B_s^0 \rightarrow J/\psi \phi$ and significantly improve ϕ_s sensitivity?

\star Sensitivities assessed by means of (fast) toy MC simulations
Physics model: $\bar{b} \rightarrow \bar{c}c\bar{s}$ to pure CP eigenstates

☆ Final states $f = J/\psi \eta, \eta_c \phi, J/\psi \eta'$ CP-even eigenstates: $(CP)|f\rangle = \eta_f |f\rangle$, $\eta_f = +1$

☆ Transition rates of initially pure B_s^0 and \overline{B}_s^0 states (perfect resolution)

$$R\left(B_s^0(t) \rightarrow f\right) = |A_f(0)|^2 \times e^{-\Gamma_s t}$$

$$\times \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - \eta_f \cos(\phi_s) \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) + qD \eta_f \sin(\phi_s) \sin(\Delta M_s t) \right]$$

- tagging categories: $q = +1$ for $R(B_s^0(t) \rightarrow f)$, $q = -1$ for $R(\overline{B}_s^0(t) \rightarrow f)$ and $q = 0$ untagged

- $A_f(0) \equiv A(B_s^0 \rightarrow f)$: instantaneous decay amplitude

- $D = (1 - 2\omega)$: tagging dilution factor; ω: wrong tag fraction

☆ Both D and ϕ_s modulate the oscillating term → need a control channel to extract ω

→ $B_s^0 \rightarrow D_s\pi$ is used

☆ Untagged events also give access to $\Delta \Gamma_s$ and ϕ_s (small sensitivity for ϕ_s, since $O(\phi_s^2)$)
Decay rates: $\bar{b} \to \bar{c}c\bar{s}$ to pure CP eigenstates

- $\Delta M_s = 20\text{ps}^{-1}$, $\Delta \Gamma_s/\Gamma_s = 10\%$, (nominal parameters) and $\phi_s = -0.4 \text{ rad}$ ($10 \times$ larger)
- Case study: $\omega = 30\%$, $acc_{slope} = 1.3 \text{ ps}^{-1}$, resolution $\sigma_\tau = 40 \text{ fs}$

Transition decay rates (including ω)

With proper time resolution

With acceptance function

B_s^0: blue (dashed) – \bar{B}_s^0: red (solid). Arbitrary vertical scales
Unbinned (extended) likelihood fit to $\mathcal{L}_{\text{tot}}^{\bar{b}\to\bar{c}c\bar{s}}$

1. The mass distributions are fitted to determine signal and background probabilities. Parameters obtained are fixed
2. Sidebands: background parameters determined, acceptance fitted. Parameters obtained are fixed
3. Signal window: physics parameters $\vec{\alpha} = (\Delta \Gamma_s / \Gamma_s, \Delta M_s, \phi_s, \tau_{B_s^0} - R_T)$ and wrong tag fraction ω are fitted

Generate and fit ~ 250 toy experiments corresponding to 1 year data taking at 2 fb^{-1}

$\mathcal{L}_{\text{tot}}^{\bar{b}\to\bar{c}c\bar{s}}$ is simultaneously maximized with likelihood of the $B_s^0 \to D_s \pi$ control sample

Caveats:

- Resolution scale factor fixed
 Scale factor S: proper time pull distribution width multiplying the event-by-event proper time error
- Mistag rate assumed to be the same for signal and control channels
 → systematic uncertainty . . .
- Same per-event lifetime errors for signal and control channels, taken from the signal channel
 → probably not well suited for $B_s^0 \to J/\psi \eta$
Likelihood: mass terms

\[
\mathcal{L}_m^{\text{sig}}(m_i; N_{\text{sig}}, m_{B^0_s}, \sigma_{B^0_s}) \propto (N_{\text{sig}})^{N_{\text{obs}}} e^{-N_{\text{sig}} G(m_i; m_{B^0_s}, \sigma_{B^0_s})}
\]

\[
\mathcal{L}_m^{\text{bkg}}(m_i; N_{\text{bkg}}, \kappa_{\text{bkg}}) \propto (N_{\text{bkg}})^{N_{\text{obs}}} e^{-N_{\text{bkg}} E(m_i; \kappa_{\text{bkg}})}
\]

☆ Extended likelihood: Poisson distribution to ensure the correct B/S ratio in the signal region

☆ \(N_{\text{obs}}\): total number of events, \(N_{\text{sig}}\): signal yield, \(N_{\text{bkg}} = N_{\text{sig}} \times B/S\): background level

\[B_s^0 \rightarrow J/\psi \, \eta \text{ mass}\]

\[B_s^0 \rightarrow \eta_c \, \phi \text{ mass}\]

Signal: red, **Background:** black, **Total:** blue – |signal region|, sidebands|sidebands

☆ Background mass: exponential shape \(\kappa_{\text{bkg}} = -1.0 \ (\text{MeV}/c^2)^{-1}\) as example value
Likelihood: rates parts

\[\mathcal{L}_{t,\text{even}}^{\text{sig}}(t_{i}^{\text{rec}}, \sigma_{t_i}, q_i | \vec{\alpha}, \omega, \text{accs}) \propto A(t_{i}^{\text{rec}}) \times \left[(1 - \omega)\Gamma_{B_s^0 \to f}(t_{i}^{\text{true}}) + \omega\Gamma_{B_s^0 \to f}(t_{i}^{\text{true}}) \right] \]
\[\otimes G(t_{i}^{\text{rec}} - t_{i}^{\text{true}}, S\sigma_{t_i}) \]

\[\mathcal{L}_{t}^{\text{bkg}}(t_{i}^{\text{rec}}, \tau_{\text{bkg}}, \text{accs}) \propto A(t_{i}^{\text{rec}}) \times E(t_{i}^{\text{true}}; \tau_{\text{bkg}}) \otimes \delta(t_{i}^{\text{rec}} - t_{i}^{\text{true}}) \]

\[\vec{\alpha} = (\Delta \Gamma_s / \Gamma_s, \Delta M_s, \phi_s, \tau_{B_s^0} - R_T): \text{vector of physics parameters} \]

\[\star \sigma_{t_i}: \text{per-event errors} \]

\begin{itemize}
 \item \[B_s^0 \to J/\psi \eta \text{ lifetime} \]
 \item \[B_s^0 \to \eta_c \phi \text{ lifetime} \]
\end{itemize}

\[\text{Signal: red, Background: black, Total: blue} \]

\[\star \text{Background decay rate: exponential shape (} \tau_{\text{bkg}} = 1.0 \text{ ps}^{-1} \text{ as example value)} \]
Comparison of decay channels - from full MC simulation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>J/ψ η(γγ)</th>
<th>J/ψ η(π^+π^−π^0)</th>
<th>ηc φ</th>
<th>J/ψ φ</th>
<th>D_s^± π^±</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{sig} [k events]</td>
<td>8.9</td>
<td>3.1</td>
<td>3</td>
<td>125</td>
<td>69</td>
</tr>
<tr>
<td>B/S</td>
<td>2.0</td>
<td>3.0</td>
<td>0.7</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>m_{tight} [MeV/c^2]</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>$m_{sideband}$ [MeV/c^2]</td>
<td>150</td>
<td>150</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>m_{loose} [MeV/c^2]</td>
<td>250</td>
<td>250</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>$\sigma_{B_s^0}$ [MeV/c^2]</td>
<td>34</td>
<td>20</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>acc_{slope} after triggers [ps^{-1}]</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>2.9</td>
<td>1.3</td>
</tr>
<tr>
<td>$<\sigma_{t\text{rec}}>$ [fs]</td>
<td>30.4</td>
<td>25.5</td>
<td>26.2</td>
<td>35.8</td>
<td>33.5</td>
</tr>
<tr>
<td>S</td>
<td>1.2</td>
<td>1.3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ω_{tag} [%]</td>
<td>35</td>
<td>30</td>
<td>31</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>ε_{tag} [%]</td>
<td>63</td>
<td>62</td>
<td>66</td>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Using $\theta_P = -15^\circ$ ($\theta_P \in [-20^\circ, -10^\circ]$) for $BR(B_s^0 \rightarrow J/\psi \eta)$

$B_s^0 \rightarrow J/\psi \phi$

- **pro**: nice signature, yield (and trigger), proper time resolution
- **con**: angular analysis to disentangle the CP eigenstates

Pure CP eigenstates

- **pro**: no angular analysis needed
- **con**: lower yields, worse B/S when γ/π^0 in final state
Sensitivities

Nominal parameters, input values

<table>
<thead>
<tr>
<th>ϕ_s [rad]</th>
<th>ΔM_s [ps$^{-1}$]</th>
<th>$\Delta \Gamma_s/\Gamma_s$</th>
<th>$\tau_{B_s^0}$ [ps]</th>
<th>R_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.04</td>
<td>20.0</td>
<td>0.1</td>
<td>1.472</td>
<td>0.2</td>
</tr>
</tbody>
</table>

R_T: fraction of CP-odd decays for the $B_s^0 \to J/\psi \phi$

Sensitivities: fit results

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>$J/\psi \eta(\gamma\gamma)$</th>
<th>$J/\psi \eta(3\pi)$</th>
<th>$\eta_c\phi$</th>
<th>$J/\psi \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\phi_s)$ [rad]</td>
<td>0.112</td>
<td>0.148</td>
<td>0.106</td>
<td>0.031</td>
</tr>
<tr>
<td>$\sigma(\Delta \Gamma_s/\Gamma_s)$</td>
<td>0.019</td>
<td>0.024</td>
<td>0.025</td>
<td>0.011</td>
</tr>
<tr>
<td>$\sigma(\Delta M_s)$ [ps$^{-1}$]</td>
<td>0.0122</td>
<td>0.0084</td>
<td>0.0084</td>
<td>0.0113</td>
</tr>
<tr>
<td>$\sigma(\tau_{B_s^0})$ [ps]</td>
<td>0.0057</td>
<td>0.0059</td>
<td>0.0062</td>
<td>0.0041</td>
</tr>
<tr>
<td>$\sigma(\omega)$</td>
<td>0.0049</td>
<td>0.0046</td>
<td>0.0046</td>
<td>0.0056</td>
</tr>
<tr>
<td>$\sigma(R_T)$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0047</td>
</tr>
</tbody>
</table>
Parameters scan

★ Nominal parameters, input values

<table>
<thead>
<tr>
<th>ϕ_s [rad]</th>
<th>ΔM_s [ps$^{-1}$]</th>
<th>$\Delta \Gamma_s/\Gamma_s$</th>
<th>$\tau_{B^0_s}$ [ps]</th>
<th>R_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.04</td>
<td>20.0</td>
<td>0.1</td>
<td>1.472</td>
<td>0.2</td>
</tr>
</tbody>
</table>

★ Sensitivities: scan results on parameters not well determined

<table>
<thead>
<tr>
<th>$\sigma(\phi_s)$ [rad]</th>
<th>Nominal</th>
<th>$\Delta M_s = 15$ ps$^{-1}$</th>
<th>$\Delta M_s = 25$ ps$^{-1}$</th>
<th>$\Delta \Gamma_s/\Gamma_s = 0.2$</th>
<th>$R_T = 0$</th>
<th>$R_T = 0.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi \eta(\gamma\gamma)$</td>
<td>0.112</td>
<td>0.102</td>
<td>0.126</td>
<td>0.099</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$J/\psi \eta(\pi^+\pi^-\pi^0)$</td>
<td>0.148</td>
<td>0.136</td>
<td>0.161</td>
<td>0.139</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\eta_c \phi$</td>
<td>0.106</td>
<td>0.100</td>
<td>0.113</td>
<td>0.097</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$J/\psi \phi$</td>
<td>0.031</td>
<td>0.028</td>
<td>0.034</td>
<td>0.030</td>
<td>0.021</td>
<td>0.062</td>
</tr>
</tbody>
</table>

★ $\Delta M_s = 15$ ps$^{-1}$: increases sensitivity to ϕ_s ($\sim 10\%$)
★ $\Delta M_s = 25$ ps$^{-1}$: decreases sensitivity to ϕ_s ($\sim 10\%$)
★ $\Delta \Gamma_s/\Gamma_s = 0.2$: increases sensitivity to ϕ_s
★ $R_T = 0$: pure CP eigenstate limit for $B^0_s \to J/\psi \phi$, $\sigma(\phi_s)$ 1.5 times better w.r.t nominal
★ $R_T = 0.5$: $\sigma(\phi_s)$ for $B^0_s \to J/\psi \phi$ gets 2 times worse for equal CP-even and CP-odd fractions

January 30 2006
Monday Seminar – 25
Benjamin Carron
Conclusion: $B^0_s \to J/\psi \eta$ selections

Selection results summary

<table>
<thead>
<tr>
<th>$B^0_s \to J/\psi \eta$</th>
<th>θ_P</th>
<th>$\eta \to \gamma\gamma$</th>
<th>$\eta \to \pi^+\pi^-\pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B^0_s mass resolution (after KF fit) [MeV/c^2]</td>
<td></td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Proper time resolution (after KF fit) [fs]</td>
<td></td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>Proper time pull width</td>
<td></td>
<td>1.22</td>
<td>1.32</td>
</tr>
<tr>
<td>Tagging efficiency (after triggers) [%]</td>
<td></td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Wrong tag fraction (after triggers) [%]</td>
<td></td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Annual signal yield (untagged)</td>
<td>-15°</td>
<td>8’900</td>
<td>3’100</td>
</tr>
<tr>
<td>B/S from $b\bar{b}$ incl. (no triggers)</td>
<td>-15°</td>
<td>2.2</td>
<td>< 3.3</td>
</tr>
</tbody>
</table>

Very promising results — with expected improvements:

- Photon reconstruction
- Proper time fitting strategies
Conclusion: φ_s expected sensitivities

- Statistical precisions for 2 fb$^{-1}$ (nominal parameters)

\[\frac{1}{\sigma} = \sqrt{\sum_i \frac{1}{\sigma_i^2}} \]

<table>
<thead>
<tr>
<th>Channels</th>
<th>(\sigma(\phi_s)) [rad]</th>
<th>Contribution [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_s^0 \to J/\psi \eta(\gamma \gamma))</td>
<td>0.112</td>
<td>6.4</td>
</tr>
<tr>
<td>(B_s^0 \to J/\psi \eta(\pi^+ \pi^- \pi^0))</td>
<td>0.148</td>
<td>3.6</td>
</tr>
<tr>
<td>(B_s^0 \to \eta_c \phi)</td>
<td>0.106</td>
<td>7.1</td>
</tr>
<tr>
<td>Combined three pure CP eigenstates channels</td>
<td>0.068</td>
<td>17.1</td>
</tr>
<tr>
<td>(B_s^0 \to J/\psi \phi)</td>
<td>0.031</td>
<td>82.9</td>
</tr>
<tr>
<td>Combined all four CP eigenstates channels</td>
<td>0.028</td>
<td>100.0</td>
</tr>
</tbody>
</table>

- Conclusion: contributions from pure CP eigenstates not negligible: \(\sim 17\%\)

- Other channels could be added
 - \(B_s^0 \to J/\psi \eta'\), however same performances as \(B_s^0 \to J/\psi \eta\) expected
 - \(B_s^0 \to J/\psi(e^+e^-) \phi\)

- At 10 fb$^{-1}$ (5 years): \(\sigma(\phi_s) \sim 0.013\) rad \(\to\) \(\sim 3\sigma\) for \(\phi_s = -0.04\) rad (SM)
 - Very good precision after one year for larger \(\phi_s\) \(\to\) more than 5σ for \(\phi_s > 0.15\) rad

January 30 2006 Monday Seminar – 27 Benjamin Carron
Visible branching ratio

⭐ η and η’ definition ($\theta_P \in [-20^\circ; -10^\circ]$):

$$
\eta = \eta_8 \cos \theta_P - \eta_1 \sin \theta_P \\
\eta' = \eta_8 \sin \theta_P + \eta_1 \cos \theta_P
$$

$$
\langle \eta_1 \rangle = \frac{1}{\sqrt{3}} \langle u\bar{u} + d\bar{d} + s\bar{s} \rangle \\
\langle \eta_8 \rangle = \frac{1}{\sqrt{6}} \langle u\bar{u} + d\bar{d} - 2s\bar{s} \rangle
$$

⭐ $\mathcal{B}\mathcal{R}_{B_s^0 \rightarrow J/\psi \eta}$ calculation based on the quark topologies method (the λ are form factors)

$$
\mathcal{B}\mathcal{R}_{B_s^0 \rightarrow J/\psi \eta} = |S_\eta|^2 \mathcal{B}\mathcal{R}_{B_d^0 \rightarrow J/\psi K_S^0} \frac{m_{B_0^0}^3}{m_{B_s^0}^3} \left(\frac{\lambda(m_{B_0^0}^2, m_{J/\psi}^2, m_{\eta}^2)}{\lambda(m_{B_d^0}^2, m_{J/\psi}^2, m_{K_S^0}^2)} \right)^{3/2}
$$

⭐ Visible branching fractions

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching fraction</th>
<th>$\theta_p = -20^\circ$</th>
<th>$\theta_p = -10^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \rightarrow J/\psi \eta$</td>
<td>(3.1 ± 1.2) · 10^{-4}</td>
<td>(4.8 ± 1.9) · 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$</td>
<td>(8.3 ± 3.5) · 10^{-6}</td>
<td>(12.8 ± 5.3) · 10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$</td>
<td>(4.7 ± 2.0) · 10^{-6}</td>
<td>(7.3 ± 3.1) · 10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>
Number of selected events - signal and background

Number of selected signal events

<table>
<thead>
<tr>
<th>$B_s^0 \rightarrow J/\psi \eta$</th>
<th>N_{gen}</th>
<th>N_{ible}</th>
<th>N_{ed}</th>
<th>$N_{ible&\prime_{ed}}$</th>
<th>N_{sel}</th>
<th>N_{trg}</th>
<th>N_{tag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta \rightarrow \gamma\gamma$</td>
<td>139'500</td>
<td>25'590</td>
<td>34'484</td>
<td>21'907</td>
<td>2'084</td>
<td>1'595</td>
<td>995</td>
</tr>
<tr>
<td>$\eta \rightarrow \pi^+\pi^-\pi^0$</td>
<td>171'000</td>
<td>26'109</td>
<td>27'635</td>
<td>19'718</td>
<td>1'486</td>
<td>1'183</td>
<td>728</td>
</tr>
</tbody>
</table>

Number of selected background events after random seed bug corrections

<table>
<thead>
<tr>
<th>$B_s^0 \rightarrow J/\psi \eta$</th>
<th>$\eta \rightarrow \gamma\gamma$</th>
<th>$\eta \rightarrow \pi^+\pi^-\pi^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{gen}</td>
<td>N_{sel}</td>
<td>N_{HLT}</td>
</tr>
<tr>
<td>inclusive $b\bar{b}$</td>
<td>30'500'000</td>
<td>16</td>
</tr>
<tr>
<td>\rightarrow inclusive $b\bar{b}$ v1</td>
<td>10'500'000</td>
<td>0</td>
</tr>
<tr>
<td>\rightarrow inclusive $b\bar{b}$ v2</td>
<td>20'000'000</td>
<td>16</td>
</tr>
<tr>
<td>$B_d^0 \rightarrow J/\psi(\mu^+\mu^-) K^+(K^+\pi^-)$</td>
<td>641'000</td>
<td>25</td>
</tr>
<tr>
<td>$B_d^0 \rightarrow J/\psi(\mu^+\mu^-) K_S^0(\pi^+\pi^-)$</td>
<td>89'000</td>
<td>3</td>
</tr>
<tr>
<td>$B^+ \rightarrow J/\psi(\mu^+\mu^-) K^+$</td>
<td>200'000</td>
<td>3</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$</td>
<td>366'000</td>
<td>10</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+\mu^-) \eta'(\pi^+\pi^-\eta)$</td>
<td>100'000</td>
<td>2</td>
</tr>
<tr>
<td>$\Lambda_b^0 \rightarrow J/\psi \Lambda$</td>
<td>100'000</td>
<td>6</td>
</tr>
<tr>
<td>inclusive J/ψ</td>
<td>1'800'000</td>
<td>6</td>
</tr>
<tr>
<td>$\rightarrow H_b \rightarrow J/\psi X$</td>
<td>128'000</td>
<td>6</td>
</tr>
<tr>
<td>\rightarrow prompt J/ψ</td>
<td>1'672'000</td>
<td>0</td>
</tr>
</tbody>
</table>
Inclusive $b\bar{b}$ background contribution

- $b\bar{b}$ events – principal source of bkg due to the high statistics and multiplicity of tracks

\[
\left(\frac{B}{S} \right)_{\text{signal}}^{b\bar{b}} = \frac{\varepsilon_{\text{gen}}^{b\bar{b}}}{\varepsilon_{\text{gen}}^{\text{signal}}} \cdot \frac{f_{\text{prod}}^{H_b\rightarrow J/\psi X}}{2 \cdot f_{B_s^0} \cdot BR_{\text{vis}}^{\text{signal}}} \cdot \frac{(N_{\text{sel}}^{b\bar{b}}/F)/N_{\text{gen}}^{b\bar{b}}}{N_{\text{signal}}^{\text{sel}}/N_{\text{gen}}^{\text{signal}}}
\]

- $\varepsilon_{\text{gen}}^{b\bar{b}} = 0.4321$ and $\varepsilon_{\text{gen}}^{\text{signal}} = 0.3471$: 400 mrad cut efficiency at generator level
- $f_{B_s^0} = 0.1$: $BR(b\rightarrow B_s^0)$
- $f_{\text{prod}}^{H_b\rightarrow J/\psi X}$: production correction factor (over-estimation of $H_b \rightarrow J/\psi X$ production)
- $F = 6$: enlargement factor due to the larger B_s^0 mass window for $b\bar{b}$

- Central value and 90% confidence level upper limit before triggers

<table>
<thead>
<tr>
<th>Decays</th>
<th>Selected events on ~ 30M</th>
<th>$\theta_p = -15^\circ$ Before triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$</td>
<td>16</td>
<td>2.2 \pm 1.1</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$</td>
<td>3</td>
<td>< 3.3</td>
</tr>
</tbody>
</table>

\implies All selected events of $H_b \rightarrow J/\psi X$ category
Inclusive $H_b \rightarrow J/\psi \ X$ background contribution

- $b\bar{b}$ events — principal source of bkg due to the high statistics and multiplicity of tracks

\[
\left(\frac{B}{S} \right)_{signal}^{H_b \rightarrow J/\psi \ X} = \frac{\varepsilon_{gen}^{incl. J/\psi}}{\varepsilon_{gen}^{signal}} \frac{f_{incl. J/\psi}}{f_{B_s^0}} \frac{BR_{vis}^{J/\psi \rightarrow \mu^+ \mu^-}}{BR_{vis}^{signal}} \frac{N_{sel}^{H_b \rightarrow J/\psi \ X}}{N_{sel}^{signal}} / \frac{N_{gen}^{H_b \rightarrow J/\psi \ X}}{N_{gen}^{signal}}
\]

- $\varepsilon_{gen}^{incl. J/\psi} = 0.399$ and $\varepsilon_{gen}^{signal} = 0.3471$: 400 mrad cut efficiency at generator level
- $f_{incl. J/\psi}$ fraction of b-hadrons decaying into $J/\psi \ X$

90% confidence level intervals before triggers

<table>
<thead>
<tr>
<th>Decays</th>
<th>Selected events on $\sim 125k$</th>
<th>$\theta_p = -20^\circ$ Before triggers</th>
<th>$\theta_p = -10^\circ$ Before triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\gamma \gamma)$</td>
<td>6</td>
<td>[1.2; 6.3]</td>
<td>[0.8; 5.4]</td>
</tr>
<tr>
<td>$B_s^0 \rightarrow J/\psi(\mu^+ \mu^-) \eta(\pi^+ \pi^- \pi^0)$</td>
<td>1</td>
<td>[0.2; 7.6]</td>
<td>[0.1; 5.0]</td>
</tr>
</tbody>
</table>

Results compatible with inclusive b\bar{b} background estimations

January 30 2006
Monday Seminar – 32
Benjamin Carron
Physics model: $B_0^s \rightarrow D_s \pi$

- $B_0^s \rightarrow D_s^- \pi^+$: flavor specific decay in which a single tree diagram contributes $(V_{cb}^* V_{ud})$
 - B_0^s decays instantaneously as $f = D_s^- \pi^+$ and \overline{B}_0^s instantaneously as $D_s^+ \pi^-$

- This decay will be used as a control channel to extract ω

- Transition decay rates with a possible mistag probability ω

 $$R_f(t) = R_{{B}_0^s \rightarrow f}(t) = |A_f(0)|^2 e^{-\Gamma_s t} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) + q(1 - 2\omega) \cos (\Delta M_s t) \right]$$

 - tagging categories: $q = +1$ for $R_f(t) = R_{{B}_0^s \rightarrow f}$, $q = -1$ for $\overline{R}_f = R_{{\overline{B}}_0^s \rightarrow f}$ and $q = 0$ untagged
 - $R \rightarrow \Gamma$ analytical rates by setting $\omega = 0$

- Observed flavor asymmetry A^{obs}_f

 $$A^{obs}_f(t) = -\overline{D} \cdot \frac{\cos (\Delta M_s t)}{\cosh (\frac{\Delta \Gamma_s t}{2})}$$

 where the dilution factor \overline{D} reduces to $D = (1 - 2\omega)$ in case of a perfect resolution
Decay rates: $B_s^0 \rightarrow D_s\pi$

- $\Delta M_s = 20\text{ps}^{-1}$, $\Delta \Gamma_s/\Gamma_s = 10\%$, (nominal parameters)
- Case study: $\omega = 30\%$, $acc_s = 1.3\text{ ps}^{-1}$, resolution scale factor $\sigma_r = 40\text{fs}$

Transition decay rates (including ω)

With proper time resolution

With acceptance function

With acceptance and resolution

B_s^0: blue (dashed) and \bar{B}_s^0: red (solid). Arbitrary vertical scales
Physics model: $B_0^s \rightarrow J/\psi \phi$

- Final state f is an admixture of CP eigenstates
 - $f = 0, \parallel$: CP-even configuration, $\eta_f = +1$
 - $f = \perp$: CP-odd configuration, $\eta_f = -1$

- Linear polarization amplitudes: $A_f(t)$
 - Fraction of CP-odd decays defined as $R_T \equiv |A_\perp(0)|^2 / \sum_{i=0,\parallel,\perp} |A_f(0)|^2 \sim \mathcal{O}(0.2)$
 - $R_T = (0.2 \pm 0.1)$, CDF Collaboration

- The one-angle θ_{tr} distribution enables to disentangle the different CP eigenstates

\[
\frac{d\Gamma(t)}{d(\cos(\theta_{tr}))} \propto \left[|A_0(t)|^2 + |A_\parallel(t)|^2 \right] \frac{3}{8} (1 + \cos^2 \theta_{tr}) + |A_\perp(t)|^2 \frac{3}{4} \sin^2 \theta_{tr}
\]

Transversity angle θ_{tr}: angle between positive lepton from the J/Ψ and the ϕ decay plane, in the J/Ψ rest frame
Decay rates: $B_s^0 \to J/\psi \phi$

- Decay rates biased by an acceptance and convoluted with a Gaussian lifetime resolution
- with a 10 times larger ϕ_s compared to SM expectation

$\bar{b} \to \bar{c}c\bar{s}$ pure CP eigenstate

$B_s^0 \to J/\psi \phi$ with $R_T = 0.2$

B_s^0: blue (dashed) and \bar{B}_s^0: red (solid). Arbitrary vertical scales

Wiggles’ amplitudes are slender in case of an admixture of CP eigenstates

In case of identical angular distributions for CP-odd and CP-even components, R_T acts as a dilution factor $(1 - 2R_T)$
Pulls: mean and standard deviation of the fitted parameters are fine, except for a significant bias in the mean of $\Delta \Gamma_s/\Gamma_s$ (and $\tau_{B_s^0} = 1/\Gamma_s$)

- ϕ_s pull

$\Delta \Gamma_s/\Gamma_s$ pull

Bias for $\Delta \Gamma_s/\Gamma_s$ decreases with statistics (larger biases for decays to pure CP eigenstates)