ϒ(5S) Decays at Belle

Jean Wicht
JSPS fellow
KEK

Lausanne, 14. September 2009
KEKB and Belle detector

KEKB: asymmetric e^+e^- collider (3.5 on 8.0 GeV): Tsukuba, Japan

B meson factory: $e^+e^- \rightarrow \Upsilon(4S), \Upsilon(5S) \rightarrow BB$

Luminosity

- **Peak**: $2.11 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (World record with crab cavities (06/2009))
- **Integrated**
 - Total: 950 fb$^{-1}$
 - $\Upsilon(4S)$: 710 fb$^{-1}$ (≈772M BB pairs, $B=B^+$ or B^0)
 - $\Upsilon(5S)$: 100 fb$^{-1}$

Today's results: 23.6 fb$^{-1}$

Solid angle coverage \sim92%
Particle identification π,K,e,μ,p
Events at the \(\Upsilon(5S) \)

- **e\(^+\)e\(^-\) collisions at \(\Upsilon(5S) \) energy**
 - bb events
 - uu, dd, ss, cc (continuum)
 - QED (ee, \(\mu \mu, \tau \tau \)) ISR
 - \(\Upsilon \) + hadrons (eg. \(\Upsilon(1S) \pi \pi \))

- Bs events
 - \(B^*_s \) events
 - \(B^*_sB^*_s \), \(B^*_sB_s \), \(B_sB_s \)
 - \(B (B^+ \text{ or } B^0) \) events
 - \(B^*B^* \), \(B^*B \), \(BB \), \(B^*B^\pi \), \(B^*B_\pi \), \(BB_\pi \), \(BB_\pi \pi \)

- Today
 - Bs decays

- \(B_s \) excited states decay to \(B_s \) \(\gamma \)
B \(_{(s)}\) reconstruction

- \(B\)\(_{(s)}\) selected using the \(M_{bc}\) (\(M_{ES}\)) and \(\Delta E\) variables:

\[
M_{bc} = \sqrt{(E_{CM}/2)^2 - (p_B^{CM})^2}
\]

\[
\Delta E = E_B^{CM} - E_{CM}/2
\]

- Difficult to fully reconstruct \(B\)\(_{(s)}\)* mesons:
 de-excitation \(\gamma\) too soft
- But the different B production decays are well separated

\(B_s \rightarrow D_s \pi\)
\(B \rightarrow D \pi\)
(one B is reconstructed)
Continuum suppression

- B_s produced with low momentum
- Continuum produced with a lot

- Fox-Wolfram moments: R_2, SFW (Super Fox-Wolfram)

Fox, Wolfram, PRL 41, 1581 (1978)
Recent B_s results from Belle
B_s at the $\Upsilon(5S)$

bb cross-section measured by continuum subtraction

2 fb$^{-1}$ at $\Upsilon(5S)$

Drutskoy et al. (Belle), PRL 98, 052001 (2007)

e$^+e^-$ collisions at $\Upsilon(5S)$

$\sigma_{\Upsilon(5S)} = (0.302 \pm 0.015)$ nb

$\sigma_{\Upsilon(4S)} \sim 1.1$ nb

B_s, B^+, B^0

$\Upsilon(5S)$

continuum (scaled)
B_s at the $\Upsilon(5S)$

B_s meson production fraction (f_s) measured with inclusive D and D_s

$$\mathcal{B}(\Upsilon(5S) \rightarrow D_s X)/2 = f_s \times \mathcal{B}(B_s \rightarrow D_s X) + (1 - f_s) \times \mathcal{B}(B \rightarrow D_s X)$$

We measure

We measure absolute branching fractions!

$$(19.5^{+3.0}_{-2.3})\%$$

In 23.6 fb$^{-1}$, 2.8 millions B_s mesons

\sim15% uncertainty, mainly due to f_s

September 14, 2009
B_s at the $\Upsilon(5S)$

$B_s^{(*)}B_s^{(*)}$ production fractions measured with fully reconstructed $B_s \to D_s \pi$ decays

$$f_{B_s^*B_s^*} = (90.1^{+3.8}_{-4.0} \pm 0.2)\%$$
$$f_{B_s^*B_s} = (7.3^{+3.3}_{-3.0} \pm 0.1)\%$$

Louvot, Wicht, Schneider et al. (Belle), PRL 100, 021801, 2009
CKM-favored modes

- We have studied:
 - $B_s \rightarrow D_s^* \pi^+, D_s^* \rho^+$ and $D_s \rho^+$

- With these high-statistics modes, we can:
 - Measure absolute branching fractions
 - proton colliders can't!
 - B_s and B_s^* masses
 - Intrinsically interesting and can also be compared with B^0 and B^*.
 - $B_s^{(*)}B_s^{(*)}$ production fractions

- Was done with $B_s \rightarrow D_s \pi^+$ already

Louvot, Wicht, Schneider et al. (Belle), PRL 100, 021801, 2009

- These modes are difficult at hadron colliders (D_s^*, ρ)
Analysis strategy

- Sub-modes
 - $\rho^+ \to \pi^+ \pi^0$
 - $D_s \to \phi \pi, K^*(892)K, K_SK$
 - $\phi \to KK$
 - $K^*(892) \to K\pi$
 - $K_S \to \pi\pi$
 - $D_s^* \to D_s \gamma$
- PID to separate K and π
- Mass cuts
- Continuum suppression
- Best candidate selection: masses and PID
$B_s \rightarrow D_{s}^{*} \rho^{+}$

Preliminary, EPS09, 23.6 fb$^{-1}$

Background from continuum only
~73 signal events are observed in the $B_s^{*}B_s^{*}$ region (8.6σ)

First observation!

\[
\mathcal{B}(B_s^0 \rightarrow D_{s}^{*-} \rho^{+}) = (13.0^{+2.3}_{-2.1}(\text{stat.})\pm1.7(\text{syst.})\pm1.7(\text{pol.})\pm1.9(f_s)) \times 10^{-3}
\]

pol. means polarization (decay to two vector-particles), will be measured for the final result

September 14, 2009
Background from $B_s \rightarrow D_s^* \rho^+$

~87 signal events are observed in the $B_s^*B_s^*$ region (10.1σ)

First observation!

\[\mathcal{B}(B_s^0 \rightarrow D_s^- \rho^+) = (8.5^{+1.3}_{-1.2}\text{(stat.)} \pm 1.1\text{(syst.)} \pm 1.3(f_s)) \times 10^{-3} \]
$B_s \to D_s^* \pi^+$

Preliminary, EPS09, 23.6 fb$^{-1}$

Background from $B_s \to D_s \pi^+$ and $D_s \rho^+$

\sim54 signal events are observed

in the $B_s^*B_s^*$ region (8.4σ)

First observation!

$\mathcal{B}(B_s^0 \to D_s^{*-}\pi^+) = (2.4^{+0.5}_{-0.4}(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.4(f_s)) \times 10^{-3}$

September 14, 2009
Some systematics

<table>
<thead>
<tr>
<th>(N_{B_s^+B_s^-})</th>
<th>(B_s^0 \rightarrow D_s^- \pi^+) [6, 8]</th>
<th>(B_s^0 \rightarrow D_s^+ K^\mp) [6, 8]</th>
<th>(B_s^0 \rightarrow D_s^{*-} \pi^+)</th>
<th>(B_s^0 \rightarrow D_s^- \rho^+)</th>
<th>(B_s^0 \rightarrow D_s^{*-} \rho^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum \varepsilon \mathcal{B}) ((10^{-3}))</td>
<td>15.8 ± 0.2 ± 1.0</td>
<td>11.2 ± 0.2 ± 0.7</td>
<td>9.13 ± 0.15 ± 0.59</td>
<td>4.40 ± 0.10 ± 0.28</td>
<td>2.69 ± 0.07 ± 0.18</td>
</tr>
<tr>
<td>(\mathcal{B}) ((10^{-3}))</td>
<td>3.7^{+0.4}_{-0.3} ± 0.4 ± 0.6</td>
<td>0.24^{+0.12}_{-0.10} ± 0.03 ± 0.03</td>
<td>2.4^{+0.5}_{-0.4} ± 0.3 ± 0.4</td>
<td>8.5^{+1.3}_{-1.2} ± 1.1 ± 1.3</td>
<td>13.0^{+2.3}_{-2.1} ± 1.7 ± 1.7 ± 1.9</td>
</tr>
<tr>
<td>(m_{B_s^0}) ((\text{MeV}/c^2))</td>
<td>5364.4 ± 1.3</td>
<td>—</td>
<td>5364.4^{+5.5}{-3.4}^{+0.6}{-0.8}</td>
<td>5372.3^{+4.2}_{-4.1} ± 0.7</td>
<td>5376.4^{+6.1}{-3.2}^{+0.6}{-0.4}</td>
</tr>
<tr>
<td>(m_{B_s^*}) ((\text{MeV}/c^2))</td>
<td>5416.4 ± 0.4</td>
<td>—</td>
<td>5416.7 ± 0.6^{+0.2}_{-0.1}</td>
<td>5416.1 ± 0.7 ± 0.1</td>
<td>5416.1 ± 0.8 ± 0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative systematics: (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-f_s) [5]</td>
</tr>
<tr>
<td>(-S \rightarrow VV) polarization</td>
</tr>
<tr>
<td>Others: (L_{\text{int}}) [22]</td>
</tr>
<tr>
<td>(\sigma_{\text{bb}}) [3, 4]</td>
</tr>
<tr>
<td>(f_{B_s^+B_s^-}) [6]</td>
</tr>
<tr>
<td>Branch. frac. [5]</td>
</tr>
<tr>
<td>Efficiency (cut)</td>
</tr>
<tr>
<td>Efficiency (MC stat.)</td>
</tr>
<tr>
<td>Tracking [23]</td>
</tr>
<tr>
<td>(\pi^\pm/K^\mp) ID [24]</td>
</tr>
<tr>
<td>(\gamma) ID [25]</td>
</tr>
<tr>
<td>(\pi^0) ID [21]</td>
</tr>
<tr>
<td>PDF shape</td>
</tr>
</tbody>
</table>
CP eigenstates

- We have studied
 - $B_s \rightarrow K^+ K^-, K_s K_s, \pi^+ \pi^-, K^- \pi^+$
 - $B_s \rightarrow J/\psi \eta, J/\psi \eta'$

- CP eigenstates are used to measure CP violation parameters: β_s, $\Delta \Gamma_s$, ...

 Dunietz, Fleischer, Nierste, PRD 63, 114015 (2001)

 - At Belle, we are not able to resolve the fast B_s oscillations (SVD resolution is insufficient, or B_s don't have enough momentum).
 However, $\Delta \Gamma_s/\Gamma_s$ is accessible.

- $B_s \rightarrow K^+ K^-$ is related to $B^0 \rightarrow \pi^+ \pi^-$ by SU(3)

 - Can test the presence of New Physics by comparing CP asymmetries

 - Can measure the CKM angle γ using the U-spin symmetry.
$B_s \rightarrow hh$ analysis

- Not much to say
- Continuum suppression uses (high-momentum) lepton tag
 - Leptons at Belle are more frequently produced in B decays than by continuum
 - Harder cut when no lepton is found
- Background is continuum only. Except in $B_s \rightarrow K\pi$: small $B_s \rightarrow KK$ background (misidentification)
$B_s \to K^+ K^-$

23 candidates observed, 5.8σ

Improved limit!

$B(B_s^0 \to K^+ K^-) = (3.8^{+1.0}_{-0.9} \pm 0.7) \times 10^{-5}$

$B(B_s^0 \to K^0 \bar{K}^0) < 6.6 \times 10^{-5}$ (90% CL)

$B(B_s^0 \to K^+ K^-) = (2.4 \pm 0.1 \pm 0.5) \times 10^{-5}$ 1.3k events...

September 14, 2009
$B_s \rightarrow \pi^+ \pi^-, K^- \pi^+$

Suppressed decays compared to $B_s \rightarrow K K$

No significant signals in both modes

$B_s \rightarrow \pi^+ \pi^-$

$B_s \rightarrow K^- \pi^+$

$\mathcal{B}(B_s^0 \rightarrow \pi^+ \pi^-) < 1.2 \times 10^{-5} \ (90\% \ CL)$

$\mathcal{B}(B_s^0 \rightarrow K^- \pi^+) < 2.6 \times 10^{-5} \ (90\% \ CL)$

CDF
PRL 103, 031801 (2009)

$\mathcal{B}(B_s^0 \rightarrow \pi^+ \pi^-) = (0.49 \pm 0.28 \pm 0.36) \times 10^{-6} (< 1.2 \times 10^{-6})$

$\mathcal{B}(B_s^0 \rightarrow K^- \pi^+) = (5.0 \pm 0.7 \pm 0.8) \times 10^{-6}$
\(B_s \rightarrow J/\psi \ \eta, \ J/\psi \ \eta' \) strategy

- Submodes:
 - \(J/\psi \rightarrow e^+e^-, \mu^+\mu^- \)
 - \(\eta \rightarrow \gamma\gamma \) and \(\eta \rightarrow \pi^+\pi^-\pi^0 \)
 - \(\pi^0 \rightarrow \gamma\gamma \)
 - \(\eta' \rightarrow \eta\pi^+\pi^- \) and \(\eta' \rightarrow \rho^0\gamma \)
 - \(\rho^0 \rightarrow \pi^+\pi^- \)
- Continuum subtraction but also important contribution from \(B \rightarrow J/\psi \) (irreducible)
 - \(B \rightarrow J/\psi \): yield and shape obtained from MC
 - Continuum: obtained from \(J/\psi \) sidebands
 - Background parameters fixed in the fit
- A simultaneous fit is performed on each \(\eta \) or \(\eta' \) submodes (\(J/\psi \) combined)
$B_s \to J/\psi \eta$

Preliminary, updated for Beauty09, 23.6 fb$^{-1}$

$J/\psi \to e^+e^-, \mu^+\mu^-$

$\eta \to \gamma\gamma$

$\eta \to \pi^+\pi^-\pi^0$

Combined

Simultaneous fit of the two η decays

Very little background from continuum and $B \to J/\psi$

$\sim 15 \pm 4$ signal events in the $B_s^*B_s^*$ region (7.3σ)

First observation!

$\mathcal{B}(B \to J/\psi\eta) = (3.3 \pm 0.9\text{(stat.)} \pm 0.3\text{(syst.)} \pm 0.4(f_s)) \times 10^{-4}$

September 14. 2009
$\mathcal{B}(B \rightarrow J/\psi \eta') = (3.1 \pm 1.2{\text{(stat.)}}^{+0.5}_{-0.6}{\text{(syst.)}} \pm 0.38(f_s)) \times 10^{-4}$

First evidence!

11±5 total signal events in the $B_s^*B_s^*$ region (3.8σ)

Simultaneous fit of 3 η' modes
Background: continuum and $B \rightarrow J/\psi$

$\eta' \rightarrow \eta\pi\pi$: very little background
$\eta' \rightarrow \rho^0\gamma$: dirty

September 14, 2009
B^+ and B^0 at the $\Upsilon(5S)$

e^+e^- collisions at $\Upsilon(5S)$ energy

- bb events
- $\Upsilon + \text{hadrons}$ (e.g., $\Upsilon(1S)\pi\pi$)
- uu,dd,ss,cc (continuum)
- QED ($ee, \mu\mu, \tau\tau$, ISR)

B_s events

B (B^+ or B^0) events

- B^*B^*
- B^*B
- BB
- $B^*B\pi$
- $B^*\pi$
- $BB\pi$
- $BB\pi\pi$

2-body

3-body

4-body

Study these final states!
General strategy

Reconstruct well-known (BF uncertainties ~3-5%) and clean (only charged tracks) B decays

- \(B^+ \to J/\psi K^+ \), \(B^+ \to D^0(K^+\pi^-)\pi^+ \) and \(B^+ \to D^0(K^+3\pi)\pi^+ \)
- \(B^0 \to J/\psi K^* \) and \(B^0 \to D^-(K^+2\pi^-)\pi^+ \)

DATA: \(B^+ \to J/\psi K^+ \)
$B^+ \rightarrow D^0(K^+\pi^-)\pi^+$

$B^0 \rightarrow J/\psi K^{*0}$

$B^+ \rightarrow D^0(K^+3\pi)\pi^+$

$B^0 \rightarrow D^-(K^+2\pi^-)\pi^+$

$B^0 \rightarrow J/\psi K^{*0}$
B⁺/₀ fractions

The total signal yield is extracted from “Mᵦc+ΔE-5.28”.

\[\text{B}^+ \rightarrow \text{D}^0(\text{K}^+\pi^-)\pi^+ \quad \text{B}^+ \rightarrow \text{D}^0(\text{K}^3\pi) \pi^+ \quad \text{B}^0 \rightarrow \text{D}^-\text{(K}^+2\pi^-)\pi^+ \quad \text{B}^+ \rightarrow \text{J}/\psi\text{K}^+ \quad \text{B}^0 \rightarrow \text{J}/\psi\text{K}^0 \]

Knowing the branching fractions and efficiency, one can compute the fraction of B⁺ and B₀.

\[f(B) = \frac{Y}{(L_{\text{int}} \times \sigma_{\text{b\bar{b}}} \times \epsilon \times B)} \]

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>Yield, events</th>
<th>Efficiency, %</th>
<th>(f(B^{+/0})), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \rightarrow J/\psi K^+)</td>
<td>221±16</td>
<td>3.62 ± 0.06</td>
<td>83.8±5.9 ± 7.2</td>
</tr>
<tr>
<td>(B^0 \rightarrow J/\psi K^*0)</td>
<td>105 ± 11</td>
<td>1.44 ± 0.03</td>
<td>77.1±8.3 ± 7.9</td>
</tr>
<tr>
<td>(B^+ \rightarrow D^0(K\pi)\pi^+)</td>
<td>215 ± 21</td>
<td>1.05 ± 0.03</td>
<td>59.2 ± 5.7 ± 5.1</td>
</tr>
<tr>
<td>(B^+ \rightarrow D^0(K3\pi)\pi^+)</td>
<td>275 ± 32</td>
<td>1.28 ± 0.04</td>
<td>62.3±7.3 ± 7.5</td>
</tr>
<tr>
<td>(B^0 \rightarrow D^-\pi^+)</td>
<td>247 ± 25</td>
<td>1.98 ± 0.06</td>
<td>65.3 ± 6.7 ± 7.2</td>
</tr>
</tbody>
</table>

\[f(B) = (68.5^{+3.0}_{-2.9} \pm 5.0)\% \]

Remember \(f_s = (19.5^{+3.0}_{-2.3})\% \)
Disentangle 2-body modes

Fit M_{bc} distribution for $M_{bc} < 5.35$ (2-body threshold), all modes combined.

Background is subtracted using sidebands.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Fraction, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B\bar{B}$</td>
<td>5.1 ± 0.9 ± 0.4</td>
</tr>
<tr>
<td>$B\bar{B}^* + B^* \bar{B}$</td>
<td>12.6 ± 1.2 ± 1.0</td>
</tr>
<tr>
<td>$B^* \bar{B}^*$</td>
<td>34.5 ± 1.9 ± 2.7</td>
</tr>
<tr>
<td>3,4-body</td>
<td>16.4 ± 1.6 ± 1.2</td>
</tr>
</tbody>
</table>

Theory predicts 3,4-body fraction to be around (0.03-0.3) %

Lellouch et al, NPB 405, 55 (1993)
Disentangle 3-body modes

Reconstruct \(B_{\text{rec}} \) and \(\pi_{\text{rec}} \) → get missing B meson (\(B_{\text{miss}} \))

In CM: \(P(B_{\text{rec}}\pi_{\text{rec}}) = P(B_{\text{miss}}) \), \(E(B_{\text{rec}}\pi_{\text{rec}}) + E(B_{\text{miss}}) = E_{\text{CM}} \)

\[
M_{bc}^{\text{miss}} = \sqrt{(E_{CM}/2)^2 - (P(B_{\text{rec}}\pi_{\text{rec}}))^2}
\]

\[
\Delta E_{\text{miss}} = E(B_{\text{rec}}\pi_{\text{rec}}) - E_{CM}/2
\]

Only \(B^*B\pi \) is significantly seen
Knowing pion reconstruction efficiency, one can get the fractions.

The residual ($BB\pi\pi$) being half of the 3,4-body is also unexpected! $BB\pi\pi$ phasespace is really small! ($M_{Y(5S)} - M_{BB\pi\pi} \sim 37$ MeV)
Summary

- Many B_s decays have been studied:
 - CKM-favored: $B_s \rightarrow D_s^* \pi^+, D_s^* \rho^+$ and $D_s \rho^+$
 - First observations, large signals seen (8-10σ)
 - CP eigenstates:
 - Charmless: $B_s \rightarrow K^+ K^-, K_s K_s, \pi^+ \pi^-, K^- \pi^+$
 - $B_s \rightarrow K^+ K^-$ observed
 - $B_s \rightarrow J/\psi \eta, J/\psi \eta'$: first observation and evidence
 - Many of these final states can only be studied at e^+e^- collider!
- Study of B^+ and B^0 production at $\Upsilon(5S)$ energy for the first time
 - Theory cannot predict rate of 3 and 4-body decays!
- All results were based on 23.6 fb$^{-1}$: four times more on tape! More results in the pipeline!
 - Belle is also reprocessing its data! Tracking is new: you can even expect more than four times better.