Searching for Higgs decays to four bottom quarks at LHCb

Master Thesis

Julien Rouvinet

Laboratoire de Physique des Hautes Energies
Faculté des Sciences de Base
Ecole Polytechnique Fédérale de Lausanne

Jury

Professeur Aurelio Bay, directeur du travail
Expert externe: Victor Coco

Lausanne 2009-2010
Abstract

In a recent paper[1], David E. Kaplan and Matthew McEvoy have claimed that it will be possible to detect the Higgs boson in the LHCb experiment if its main decay occurs through the channel $h^0 \rightarrow aa \rightarrow b\bar{b}bb$ for a Higgs mass not too far above current limits. Many models beyond the Standard Model, like NMSSM1, little Higgs, composite Higgs or any model where new light scalar (or pseudo-scalar) particles are coupled to the Higgs incorporate such phenomenology. The main feature of the LHCb experiment is the reconstruction of b particles through a proper b-tagging. The goal of this Master Thesis is to test this hypothesis through a preliminary study of this particular Higgs decay mode using PYTHIA. A background contribution is generated using ALPGEN. b-jets are reconstructed in order to recover the pseudo-scalar particle a. Two a candidates are subsequently combined to obtain the Higgs. Finally, a Toy Monte Carlo is made to assess the capability to extract the signal.

1Next-to-Minimal SuperSymmetric Standard Model
Chapter 1

The Large Hadron Collider and The LHCb experiment

1.1 The LHC

The LHC is the CERN’s new circular hadrons collider located beneath the Franco-Swiss border near Geneva Switzerland. It has been commissioned on autumn 2008 and reopened on November 2009 after some adjustments. This collider is the world’s largest and highest-energy particles accelerator. It lies in a tunnel of 27 km of circumference and will produce collisions between protons at an energy of 7 TeV in the center of mass frame and between Pb ions at an energy of 574 TeV per nucleus. The most famous question which is likely to be answered through this incredibly technical challenge concerns the existence and properties of the Higgs boson. Physicists are also looking for an explanation of the imbalance between matter and antimatter in the Universe. Moreover, because of the huge available energy, new types of particles (for instance SUSY’s) may be produced. Properties of the quark-gluon plasma will also be hunted down. Therefore, to perform these crucial break-throughs, four major experiments have been installed along the cave.

\[^{1}\text{Centre Européen pour la Recherche Nucléaire: international collaboration created in 1954}\]
ATLAS, A Toroidal LHC ApparatuS, is designed to observe phenomena involving massive particles, in particular the electroweak interaction symmetry breaking through the Higgs mechanism. It might shed light on theories beyond the Standard Model. This five stories sized detector is designed to measure the broadest range of energy signals rather than focusing on a specific process.

The second experiment is CMS, the Compact Muon Solenoid. It also is a general purpose detector designed with the same goals than ATLAS. These two detectors will complement each other, hopefully finding new physics and discovering the Higgs boson.

The third one is ALICE, A Large Ion Collider Experiment. It will study \(\text{Pb} - \text{Pb} \) collisions in order to investigate the quark gluon plasma. This state of matter is supposed to have been generated close to the Big Bang.

Finally, the LHCb, Large Hadron Collider beauty, is designed to understand the matter-antimatter asymmetry through the study of CP violation in B-mesons systems. More details are given on the next section.

1.2 The LHCb Experiment

![Figure 1.2: The LHCb experiment in the vertical plane](image)

The LHCb is a single arm forward spectrometer with an angular coverage (acceptance) of \(15 \leq \theta \leq 330 \text{ mrad} \) corresponding to a pseudo rapidity of \(1.8 < \eta < 4.9 \) where \(\eta = -\ln(\tan(\theta/2)) \). This angle seems small but is justified by the fact that b-hadrons have a transverse momentum smaller than their longitudinal momentum. The detector is optimized to exploit the large number of b quarks produced during the collision. The LHCb luminosity is lower than the luminosity potential of the LHC. It is set to \(L^{LHCb} = 2 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1} \) to obtain an average of one \(p-p \) interaction per crossing. We can notice different components:
The Vertex Locator (VELO): Surrounding the interaction point, it is made of 25 silicon stations of 200 \(\mu m \) of thickness. The VELO allows the reconstruction of the position of the secondary vertices with a resolution of about 300 \(\mu m \).

RICH1 and RICH2: These two Ring Imaging Cherenkov detectors allow particles identifications.

TT, T1, T2 and T3 trackers: measure the momentum of charged particles deviated by a magnetic field.

The Scintillator Pad Detector (SPD): differentiates charged particles from neutral ones.

The PreShower (PS): It achieves the pre-detection of electromagnetic showers and distinguishes between electrons and pions.

The ECAL and HCAL: These two calorimeters measure the total amount of energy deposed by the electrons, photons and hadrons.

The M1-M5 Muons detector: Positioned at the end of the detector, they measure the total energy of muons, particles weakly interacting.

Once the collisions start, it is important to select the events to store because if everything was to be saved, the amount of data would be of the order of 40 \(TB/s \). To achieve the reduction, two stages of trigger are performed. The first level is interesting because it makes the study of the Higgs decay into four b quarks worth at LHCb. The Level-0 Trigger is based on calorimeter and muon chamber information in order to reduce the event rate down to 1 \(MHz \) by requiring a muon, an electron, a photon or a hadron with an high transverse momentum and transverse energy. Tracks associated with b-hadron decays fulfill these conditions. Also, in inclusive production, the Higgs is significantly boosted along the \(z \)-axis and thus, at least one b quark often lives at large pseudo-rapidity, and therefore excellent tracking and vertexing in the forward region are crucial for the kind of signal we are interested in.[1]

More details on the LHCb experiment and on the trigger system can be found on its internet website or in [3].
Chapter 2

Theoretical overview

This chapter consists in a very brief presentation of the Standard Model of particles physics along with a quick introduction to the Higgs mechanism. Plenty of good books can be consulted on these subjects. Therefore, only the material useful for this work is described.

2.1 Standard Model and Higgs Boson

2.1.1 The Standard Model

The Standard Model of particle physics (or SM) is a relativistic quantum field theory which describes three of the four fundamental interactions of Nature and the elementary particles that undergo these interactions. This model is a gauge theory which is in relatively good agreement with the present (beginning of 2010) experimental results. The SM gauge group is:

\[G_{SM} = SU(3)_c \times SU(2) \times U(1) \]

\(SU(3)_c \) is the group associated with Quantum Chromo Dynamics (the subscript \(c \) stands for color, which is the name of the strong charge) while \(SU(2) \times U(1) \) is associated with both the electromagnetic and weak forces. The model also describes the elementary particles. A list of those particles and their masses is given in Figure 2.1.
The leptons and the quarks are the matter building blocks while the bosons are the mediators of the interactions. The gravitational force is not included in the SM. However, by analogy with the other three forces, we could imagine that a graviton mediates the interaction. It has not been discovered and a lot of efforts are made to associate General Relativity and the Standard Model in order to have an unified theory of Nature. Besides its good agreement with the experimental results, the SM has some limitations. It gives no explanation to dark matter and dark energy and is not compatible with the theory of General Relativity. Thereby, a large panel of theories have been proposed and are waiting LHC data for confirmation. Let us name for example the SuperSymmetric (or SUSY) model with its promising theory of bringing new particles to light and describing new physics. We can also think of the famous String Theory or of Technicolor which is a QCD based model. Hopefully, the LHC results will shed light on the subject.

2.1.2 The Higgs Mechanism

Up to this point, the Standard Model contains only massless particles. A mechanism responsible for the masses of the massive vector bosons Z^0 and W^\pm along with all the other particles must be added. Such a mechanism must preserve the gauge invariance of the theory. A solution was found by Robert Brout and Francois Englert, independently by Peter Higgs, and by Gerald Guralnik, C. R. Hagen, and Tom Kibble in 1964. A new massive particle (a scalar field), the Higgs boson, is introduced. Through its interactions with the other fields, it confers masses to the massive vector bosons, but also to quarks and leptons. The principle of the mechanism is very well described in ref.[11].

Up to now, the Higgs had not yet been discovered but limits on its mass have been experimentally found and are (see ref.[10]):

- Standard Model experimental maximal benchmark scenario: $m_{h^0} > 114.4\text{ GeV}$, $CL = 95\%$
- Supersymmetric Models: $m_{h^0} > 92.8\text{ GeV}$, $CL = 95\%$
2.2 The Higgs to four b decay

Assuming that the SM is correct up to 1 TeV, we know quite well the production cross section and the decay width of the Higgs for any given mass. Nevertheless, these quantities are very sensitive to the physics hidden beyond the SM. If we assume the existence of a light neutral pseudo scalar particle having a mass about half the Higgs mass, the Higgs could decay dominantly into this particle without affecting the Z width too much. This particle will be called a through all this work. Many models include such phenomenology. Let us name for example the NMSSM, Higgs composite and little Higgs theories. We will assume that the branching ratio of the Higgs to the a is equal to one and that the a is forced to decay into a $b \bar{b}$ pair. The large number of models containing this physics can be approximated simply by adding this a to the SM. The coupling to the Higgs is then simply:

$$\frac{1}{2} \lambda a^2 H^\dagger H$$

(2.1)

This term will generated a mass given by:

$$m_a^2 = \frac{1}{2} \lambda v^2$$

(2.2)

$v \simeq 246 GeV$ being the Higgs vacuum expectation value. The decay rate for this process is:

$$\Gamma(h \rightarrow aa) \simeq \frac{1}{32 \pi} \frac{\lambda^2 v^2}{m_h} \sqrt{1 - \frac{4m_a^2}{m_h^2}}$$

(2.3)

This width dominates the Higgs decay comparing to the total decay rate of a (e.g. 115 GeV) SM Higgs if the coupling to the scalar is $\lambda > 0.25$.

2.2.1 QCD backgrounds to $h^0 \rightarrow aa \rightarrow b\bar{b}b\bar{b}$

In addition to the signal, we have to consider the existence of an irreducible QCD $b\bar{b}b\bar{b}$ background because these four b could be mistaken as resulting from a decays. Hence, it is necessary to include those b to the study.

We must also include a $b\bar{t}\bar{t}$ component because the top quark usually decays into a b quark which will give birth to another source of background. However, it appears that this source is negligible, because its production cross section is small (as is illustrated in table 4.1).

Another source of background is related to the limited capability to discriminate between b and c jets. The LHCb experiment is designed to recognize b events, this is called b-tagging. Nevertheless, the efficiency of b-tagging is not 100%. Sometimes, c jets are mistaken to be b jets. In a recent paper (see ref.[5]), A.Bay and C. Potterat describe an algorithm for the determination of the seeds to be used in the reconstruction of b jets. They show that the typical efficiency to discover b jets is about 70%. The probability to confuse c with b jets is about 30%. Enhanced flavour criteria will be considered in further studies to improve those efficiencies. Taking this fact into consideration leads us to add a $b\bar{c}c\bar{c}$ background contribution to our analysis.

1 see [1] from which this section is strongly inspired
2 The cross section given by ALPGEN for this process is $3.78 pb$.

11
Chapter 3

Events generation using **Pythia** and **Alpgen**

To study the Higgs decay into four b-quarks, the standalone computer program **Pythia** version 6.325 is used. We have chosen this version to insure compatibility with **Alpgen** version 2.13, which is a generator for hard multiparton processes in hadronic collisions\[4\]. These two generators are based on Monte Carlo methods. The energy in the center of mass frame of the two incoming protons is $\sqrt{s} = 14 \text{ TeV}$, corresponding to the maximal energy that should be reached by the LHC at the end of the year 2012.

3.1 Generation of signal events using **Pythia**

The various and most important parameters used to generate signal events are described here. First, the decay file used by **Pythia** has to be modified in order to force the Higgs to turn into two α particles. Then, each α has to decay into a $b\bar{b}$ pair. Therefore, a new bloc is added in the decay file, corresponding to the α (associated to the identification number n°35). The branching ratio for the decay of α into four b-quarks is set equal to one. For the Higgs decay into two α, the branching ratio is set to 0.97 because the inverse process of the gluons fusion used to generate the Higgs has to be permitted. The Higgs mass and the α mass are both parameters. We will vary them to see how the kinematics changes. We have considered two different masses for the Higgs: $m_h = 115$ and 125 GeV/c2 and three different masses for α: $m_\alpha = 20, 25$ and 35 GeV/c2. This is made by changing the masses in the decay file used by the program. The Higgs boson is produced by **Pythia** through gluons fusion\(^1\). The associated Feynman diagram is shown in Figure 3.1.

![Figure 3.1: Feynman diagram of gluons fusion](imageurl)

\(^1\)by setting $MSUB(102) = 1$
After production, the program computes the hadronization and the decay processes of the event. An example of event can be found in [3].

The most relevant configuration parameters used for the simulation are given in table 3.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTP(2)</td>
<td>2</td>
<td>Compute α_s to second order</td>
</tr>
<tr>
<td>MSTP(61)</td>
<td>1</td>
<td>QED and QCD initial state radiation</td>
</tr>
<tr>
<td>MSTP(71)</td>
<td>1</td>
<td>QED and QCD final state radiation</td>
</tr>
<tr>
<td>MSTP(81)</td>
<td>1</td>
<td>Multiple interactions</td>
</tr>
<tr>
<td>MSTP(82)</td>
<td>3</td>
<td>Structure of multiple interactions</td>
</tr>
<tr>
<td>MSTP(111)</td>
<td>1</td>
<td>Fragmentation and decay</td>
</tr>
<tr>
<td>MSTP(131)</td>
<td>0</td>
<td>Only one event is generated at a time</td>
</tr>
<tr>
<td>MSTP(151)</td>
<td>1</td>
<td>Program execution</td>
</tr>
<tr>
<td>MSTU(21)</td>
<td>1</td>
<td>Check on possible errors during program execution</td>
</tr>
<tr>
<td>PARP(67)</td>
<td>1.0</td>
<td>$-Q^2$: maximum parton virtuality allowed in time-like showers</td>
</tr>
<tr>
<td>PARP(81)</td>
<td>21</td>
<td>Effective min. transverse momentum $p_{\perp\min}$ for multiple interactions</td>
</tr>
<tr>
<td>PARP(82)</td>
<td>4.50</td>
<td>Regularization scale $p_{\perp0}$ for multiple interactions</td>
</tr>
<tr>
<td>PARP(85)</td>
<td>0.33</td>
<td>Related to gluons in multiple interactions</td>
</tr>
<tr>
<td>PARP(86)</td>
<td>0.66</td>
<td>Related to gluons in multiple interactions</td>
</tr>
<tr>
<td>PARP(89)</td>
<td>14000.0</td>
<td>Reference energy scale</td>
</tr>
<tr>
<td>PARP(90)</td>
<td>0.116</td>
<td>Power of the energy-rescaling term of the $p_{\perp\min}$ and $p_{\perp0}$ parameters</td>
</tr>
<tr>
<td>PARP(91)</td>
<td>1.0</td>
<td>Width of Gaussian primordial k_{\perp} distribution inside hadron</td>
</tr>
<tr>
<td>PARP(131)</td>
<td>0.0048</td>
<td>Luminosity for pile-up events</td>
</tr>
<tr>
<td>PARP(151)</td>
<td>0.007 [mm]</td>
<td>σ_x of beam</td>
</tr>
<tr>
<td>PARP(152)</td>
<td>0.007 [mm]</td>
<td>σ_y of beam</td>
</tr>
<tr>
<td>PARP(153)</td>
<td>0.059 [mm]</td>
<td>σ_z of beam</td>
</tr>
<tr>
<td>PARP(154)</td>
<td>0 [mm/c]</td>
<td>σ_t of beam</td>
</tr>
<tr>
<td>MSTJ(1)</td>
<td>1</td>
<td>String fragmentation according to the Lund model</td>
</tr>
<tr>
<td>MSTJ(26)</td>
<td>0</td>
<td>No $B-\bar{B}$ mixing in decays.</td>
</tr>
<tr>
<td>PARJ(11)</td>
<td>0.5</td>
<td>Prob. spin 1 light meson (containing u and d quarks only)</td>
</tr>
<tr>
<td>PARJ(12)</td>
<td>0.4</td>
<td>Prob. spin 1 strange meson</td>
</tr>
<tr>
<td>PARJ(13)</td>
<td>0.79</td>
<td>Prob. spin 1 charm or heavier meson</td>
</tr>
<tr>
<td>PARJ(14)</td>
<td>0.0</td>
<td>Prob. spin 0 meson is prod. with orb. ang. mom. 1, for total spin 1</td>
</tr>
<tr>
<td>PARJ(15)</td>
<td>0.018</td>
<td>Related to probability of specific meson production</td>
</tr>
<tr>
<td>PARJ(16)</td>
<td>0.054</td>
<td>Related to probability of specific meson production</td>
</tr>
<tr>
<td>PARJ(17)</td>
<td>0.131</td>
<td>Related to probability of specific meson production</td>
</tr>
<tr>
<td>PARJ(33)</td>
<td>0.4</td>
<td>Define the remaining energy below which 2 final hadrons are formed</td>
</tr>
</tbody>
</table>

Table 3.1: Most important configuration parameters used in Pythia. These parameters are directly implemented into the Fortran code. For more details on the list of parameters and on their usage see [8].
3.2 Background contributions using Alpgen

Alpgen [4] is dedicated to the study of multiparton hard processes in hadronic collisions. It is based on the ALPHA algorithm. Therefore, it constitutes the perfect tool to generated \(b\bar{b}, b\bar{b}c \) and \(b\bar{t}t \) backgrounds. The generation is divided into two phases. The first one produces weighted events whereas the second produces the unweighted events that will be showered through Pythia. The first phase is initialized by a file containing the informations given in table 3.2. An example of file is given in Appendix A.

<table>
<thead>
<tr>
<th>Parameter and explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>imode, 1 generates weighted events and writes to file for later unweighting</td>
<td>1</td>
</tr>
<tr>
<td>Label for the produced files</td>
<td>bbbb</td>
</tr>
<tr>
<td>Grid: The generator will use a new grid</td>
<td>0</td>
</tr>
<tr>
<td>Number of events per iteration and number of warm-up iterations</td>
<td>100000000 2</td>
</tr>
<tr>
<td>Number of events generated after warm-up</td>
<td>100000000</td>
</tr>
<tr>
<td>ilhv: choose the heavy flavour type, here b quark</td>
<td>5</td>
</tr>
<tr>
<td>ilhv2: same as before to insure b\bar{b} production</td>
<td>5</td>
</tr>
<tr>
<td>ebeam: beam energy in the center of mass frame</td>
<td>7000.0</td>
</tr>
<tr>
<td>ih2: Select (pp) collisions</td>
<td>1</td>
</tr>
<tr>
<td>ndns: Parton density function, CTEQ5L * is used</td>
<td>5</td>
</tr>
<tr>
<td>njets: Number of light jets</td>
<td>0</td>
</tr>
<tr>
<td>etabmax: Pseudo rapidity (\eta) maximum of (b) quarks</td>
<td>4.5</td>
</tr>
<tr>
<td>drbmin: (\Delta R) minimum between (b) quarks</td>
<td>0.1</td>
</tr>
<tr>
<td>ptbmin: Minimum transverse momentum of (b) quarks</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3.2: Chosen parameters for the first generation phase in Alpgen. These are the parameters for the \(b\bar{b}b \) component of the background leading to 703′906 events generated. For a complete list and more explanations see [4] and [9]. The parameters for the \(b\bar{b}c \) and \(b\bar{t}t \) components are given in Appendix A.

After the first phase, weighted events are produced. The program subsequently can perform the unweighting of those events. The names of the weighted files are also used for the names of the output files. Those files are:

- **qqqq.stat:** Contains value of the input parameters, list of hard process selected and generation cuts. It then reports the results of each individual integration cycle, with total cross sections and individual contributions from the allowed subprocesses. Contains maximum weights of the various iterations, the corresponding unweighting efficiencies, and the value of the cross-section accumulated over the various iterations weighted by the respective statistical errors.

- **qqqq.grid1** and **qqqq.grid2:** The phase-space is discretized and parameterized by a multi-dimensional grid. Those files contain details on the grid and on its parametrization.

- **qqqq.par** and **qqqq.unw.par:** Include run parameters (beam energies and types, generation cuts, etc), phase-space grids, cross-section and maximum-weight information.
• **qqqq.wgt**: Stores the two seeds of the random number generation, the event weight and the value of other parameters of the event.

• **qqqq.unw.stat**: Includes cross sections, maximum weight, etc...

• **qqqq.unw**: List of unweighted events, including event kinematics, flavor and color structure and event weight.

Finally, these events are transferred to PYTHIA via the qqqq.unw.par and qqqq.unw files.

3.3 Number of generated events

We have produced 10'000 signal events. 700'000 $b\bar{b}b\bar{b}$ background events and 500'000 $b\bar{b}c\bar{c}$ background events have been treated with PYTHIA after generation by ALPGEN.

3.4 MC-events generation and analysis

Once the events are generated, the program should be capable to sort the particles, perform some treatments like jet reconstructions and store the interesting informations in files that can be used for further analysis. In this section, the different algorithms used to study the characteristics of both the signal and the background are enumerated and briefly presented.

Events generation

The program written for this work\(^2\) offers two different options. The first one is the generation of signal events that can be stored or directly treated by various algorithms. It manages the interface with PYTHIA and the selection of the decay file. The program checks that $h \rightarrow aa$ events have been produced and counts these events for statistical purposes.

The second option passes the background events produced by ALPGEN to PYTHIA for hadronization.

####Acceptance

The LHCb experiment has a limited angular coverage implemented in the code by checking that every interesting particle belongs to the cone defined by:

$$15 < \theta < 390 \text{ mrad}$$

which is a little bit bigger than the LHCb acceptance to allow for boundary effects studies in further analysis. This condition implies that only particles lying inside the cone are considered.

\(^2\)in the FORTRAN language (see [7])
Searching the muons and their genealogy

In the article [1] on which this analysis is inspired, the LHCb experiment is chosen because of its inclusive muon trigger which acts as an "existence proof" to save the data to disc. Therefore, the program looks for muons and checks if they are products of the decay of a b-hadron, coming from the decay product of one a. Then, a consistency check is made by verifying that the inclusive branching ratio of b hadrons to muons is about 11%. It is indeed the case for every simulation we made. Finally, informations are stored and statistics are computed.

Jet reconstruction

Each of the b quarks produced is used as a seed for the jet reconstruction. Of course, in real life, the b quarks are not directly observable and it is only through jet reconstruction that information on the Higgs and a masses can be gathered. The code contains different algorithms for the reconstruction. Details will be given in the chapter 4.

Saving the informations

All important data are saved in (.hbk) files that can be analyzed later\(^3\). We construct histograms of the kinematical variables of jets, b quarks, muons, a and Higgs. The energy and momentum are saved along with different sets of variables as the angular distance between particles. It is also possible to store the full event generations in (.dat) files that can be read later for analysis.

The mismatch algorithm

This simple algorithm is the implementation of the possibility that the detector misinterprets a c quark to be a b quark. A b quark has roughly 70% of chance to be correctly recognized. A c quark has a probability of 30% to be interpreted as a b quark. This fact is explained in [5], which describes a preliminary study of an algorithm allowing b jet reconstruction. Researches are being made on this subject and progresses are expected, leading to a better reconstruction and therefore reducing the impact of the $b\bar{b}c\bar{c}$ background considered here.

In practice, the algorithm overwrites the identification number of the c quarks (from 4 to 5), leading the program to consider c jets as b ones. The possibility to mix up the c and b quarks is offered at the beginning of the treatment of the background.

\(^3\)using either Paw or Root; these two programs enable histograms and statistical treatments of data
Chapter 4

Study of the $h^0 \rightarrow aa \rightarrow b\bar{b}b\bar{b}$ signature in LHCb

This chapter describes the signature of the $h^0 \rightarrow aa \rightarrow b\bar{b}b\bar{b}$ physical process as well as the contribution of different backgrounds. It also proposes a Toy Monte Carlo analysis to study the efficiency of the signal detection. For the analysis, we choose $m_h = 115$ GeV/c2 and $m_a = 20$ GeV/c2. We have also generated events with $m_h = 125$ and $m_a = 25$ and 35 GeV/c2. For those cases, the analysis is essentially the same, therefore, only the first set of parameters is fully described here. To follow the work presented in [1], it would be interesting to complete the study for those different masses too and see the effect of their variations on the efficiency of the method illustrated in what follows.

The b quarks hadronize into "jets". A technique to reconstruct jets is based on the cone algorithm: particles are gathered when they fall inside a cone of aperture ΔR in (η, ϕ) space\(^1\). The angular distance is defined by Eq. 4.1.

\[
\Delta R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}
\] (4.1)

For simplicity, we consider events where the four b quarks are either produced by the signal or by background contributions. Mixed possibilities where, for instance, a b is the result of another process and the three others are signal ones are not discussed. Of course, these more complicated situations have to be considered in further studies.

In the following, the signal and background distributions are normalized to 1 unless otherwise is specified.

4.1 b quarks analysis

We first consider the kinematics of the b quarks. Only events with four b quarks inside the LHCb acceptance are considered\(^2\). This corresponds to about 7% of the generated signal events and 3.5% of $b\bar{b}b\bar{b}$ and $b\bar{b}c\bar{c}$ generated background events.

First, the angle and ΔR distributions are represented in order to find a good strategy to reconstruct jets. Obviously, if the b are produced close to each other, their jets will overlap and it will be difficult to reconstruct them. Figure 4.1 shows the angular and ΔR distributions of the b of the signal and also of the b coming from the $b\bar{b}b\bar{b}$ and $b\bar{b}c\bar{c}$ backgrounds. A jet is generally constructed with a cone radius of $R_{\text{cone}} = 0.6$. Therefore,

\(^1\)See Ref.[2] and [5]
\(^2\)Let us recall that the enlarged acceptance is $15 < \theta < 390$ mrad
two jets overlap if $\Delta R(b_1, b_2) < 2 \cdot R_{\text{cone}} = 1.2$. The ΔR distance for the signal is less than one suggesting that the jets are likely overlapping each other. The background distributions are flatter, especially for $b\bar{b}bb$. That is why it is difficult to reconstruct each jet for the signal. Another strategy must be adopted.

Figure 4.1: Angle and ΔR between the b from the signal (black), the $b\bar{b}b\bar{b}$ background (red) and the $b\bar{c}c\bar{c}$ (blue) background. We note that the ΔR background distribution is much flatter than the signal distribution. The small ΔR distance indicates that some jets overlap.

Figure 4.2 shows the transverse momentum distribution of the b quarks coming from signal and backgrounds. The P_t distribution of the signal is wider than those of the backgrounds and the average P_t is smaller.
4.2 Jets reconstruction

Our objective is to reconstruct the mass of the a and of the Higgs. The four jets will consequently be combined. Therefore, it is not necessary to reconstruct each of them to match the “real” physical jets. Section 4.1 brings to light the possibility for the real jets to overlap.

What we do is to use each b quark as a seed and, to avoid multiple particle counting, group the b in pairs corresponding to a candidate. Then, for each particle of the list, we test if it belongs to the cone of maximal radius $\Delta R = 0.6$ centered around the first quark. If it is not the case, we test the condition for the second quark. Of course, in the case of two jets overlapping, the first reconstructed jet will contain more particles than the other one. Nevertheless, because we combine those two jets to reconstruct the a candidate, it does not matter. The only trick we have to do is to decide how to form the pairs of b used, out of the three different combinations we can do. The solution that will be adopted is explained in the section 4.3.

Quarks are not directly observable in practice, therefore, it would have been more realistic to use b-hadrons instead of b quarks as seeds. However, because the ΔR distance between
For each event with 4 b quarks inside the acceptance, ΔR_{min} and ΔR_{max} between pairs of b are computed. Those plots show evidences of future jets overlapping.

the quark and the corresponding b-hadron is small ($\langle \Delta R \rangle \simeq 0.02$, see ref.[2]), using the quark is justified.
Figure 4.4: Transverse momentum of two of the four b jets from the signal (top) and the $b\bar{b}b\bar{b}$ background (bottom).
Figures 4.4 and 4.5 illustrate the four jets P_t obtained from our algorithm. $P_t(j_i)$ is the transverse momentum of the jet number i. $i = 1, 3$ correspond to the two "biggest" jets while $i = 2, 4$ are the two "smallest" (see Figure 4.4 and 4.5). j_1 and j_3 have wider spectra because they contain more particles, being built from the first seeds. Looking at those graphs, it is impossible for us to already determine selection cuts to discriminate between $b\bar{b}b\bar{b}$ QCD background and signal, except a possible lower cut around 20 GeV/c for P_t of j_1 and j_3.

To have a better understanding of the situation, we can make a correlation plot of the transverse momentum of jets. This is done for a particular combination (jet 1 with jet 2 and jet 3 with jet 4) in figure 4.6. We see a more pronounced anti-correlation for the signal than for the background.

Figure 4.5: Transverse momentum of two of the four b jets from the signal (top) and the $b\bar{b}b\bar{b}$ background (bottom).
Figure 4.6: Transverse momentum of the b quarks of the signal (top) and the $b\bar{b}b\bar{b}$ background (bottom).
4.3 Reconstruction of the a

From the Monte Carlo truth, we can calculate the production angle and ΔR between two a as shown in Figure 4.7.

![Figure 4.7: Angle and ΔR between the a obtained from MC truth.](image)

We see that the a are produced well separated from each other with ΔR peaked at 3. The main problem is to choose the most likely two combinations of 2-jets out of the three possibilities.

The first criteria tested was the combination of the two jets whose seeds are the closest. We computed the ΔR distance between all the b and combined the two nearest b together. The two b left form the second a candidate.

Another criteria is suggested in [1]. It consists in choosing the combination which minimizes the quantity $(R_1)^2 + (R_2)^2$, where R_1 (R_2) is the distance between the first (second) pair of jets.

For our quadrivector analysis, no significant differences appear between the two methods for signal events. Therefore, we have chosen to use the first method by combining the jets with the closer seeds. A comparison graph of the two methods is available in Appendix.
B. We have also computed the percentage of correct combinations by checking that the combined jets are those with the seeds that come from the same a (using the Monte Carlo truth). We found about 99\% of correct combinations\(^3\).

4.3.1 Selection cuts

Selection cuts are conditions imposed on different observables or their combinations to improve the discrimination between signal and background. The discrimination power is evaluated from the ratio:

\[
\sigma = \frac{S}{\sqrt{S+B}}
\]

(4.2)

which is called ”significance”.

Figure 4.8: Transverse momentum of the two a candidates for signal (black) and $bb\bar{b}$ background (red). The third plot shows the correlation between $P_t(a_1)$ and $P_t(a_2)$. (Plots displaying the $b\bar{b}c\bar{c}$ background are showed in Appendix B.)

Figure 4.8 shows the transverse momentum of both the signal and the $bb\bar{b}\bar{b}$ background. It suggests to cut at about 40 GeV$^{-1}$ to get rid of a large part of the background. The third plot strongly suggests to cut rather on the anti-diagonal, at $P_{t_1} + P_{t_2} = 70$ GeV$^{-1}$. Unfortunately, doing so would imply a strong bias on the unknown Higgs mass. Thus, a

\(^3\)This percentage is strongly dependent on the mass parameters used for the generation. For instance with $m_h = 125$ GeV and $m_a = 35$ GeV we found 73\% of correct combinations.
weaker condition is chosen:

\[
\begin{align*}
Pt(j_1) + Pt(j_2) &< 60 \text{ GeV} c^{-1} \\
Pt(j_3) + Pt(j_4) &> 20 \text{ GeV} c^{-1}
\end{align*}
\] (4.3)

Figure 4.9 shows the masses of the \(a\) candidates (and also the reconstructed Higgs mass). No cut has been imposed yet. The distributions suggest to introduce:

\[13 < m_a < 25 \text{ GeV} c^{-2}\] (4.4)

Applying the cuts 4.3 we obtain Figure 4.10. The green arrows represent the cuts given by 4.4.
Figure 4.9: Reconstructions of the mass of the a candidates obtained from the signal and the backgrounds ($b\bar{b}b\bar{b}$ in red top three plots and $b\bar{b}c\bar{c}$ in blue bottom three plots). No cuts are applied yet.

We observe that the mass of the reconstructed a is smaller than the value used for the simulation (ie 20 GeV$^{-2}$). This is due to the loss of neutrini in jets reconstruction along with the loss of particles produced outside the acceptance.
Figure 4.10: Reconstructed mass distributions of the two a after cuts. $bb\bar{b}b$ background is represented in red while $b\bar{c}c\bar{b}$ is in blue. The green arrows symbolize the mass cuts given by Eq. 4.4.

4.4 Higgs reconstruction

We can now combine the two a candidates to get the mass distribution for the Higgs boson candidate.

Figure 4.11 shows that the reconstructed Higgs mass is smaller than the mass used for generation ($115 \text{ GeV}c^{-2}$). This is explained by the same argument as for the m_a. The
mass values obtained from both backgrounds are even smaller. A fitting method to extract the signal from the signal plus background distribution will be discussed in section 4.7.

4.5 Number of events

We can compute the number of events expected per year by using the formula:

\[
N_{\text{evts}} = \int \mathcal{L}_{\text{LHCb}} \, dt \cdot [\sigma_{h^0} \cdot BR(h^0 \rightarrow aa) \cdot BR(a \rightarrow bb)]^2
\]

(4.5)

The luminosity integrated over a running year of the LHCb is equal to 2 \(fb^{-1} \). The branching ratios are set to be equal to one because of theoretical arguments given in Chapter 2. We also multiply Eq. 4.5 by the percentage of events lying in the enlarged LHCb acceptance.
Using the total number of events and the number of events that pass the cuts, we can compute the values in Table 4.1.

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross section σ [pb]</th>
<th>% in accept.</th>
<th>Total number of events after 1 LHCb year</th>
<th>Prob. of 4 b’s recognition ϵ_b</th>
<th>Number passing the cuts $\times \epsilon_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs production</td>
<td>94</td>
<td>7.5</td>
<td>$1.4 \cdot 10^4$</td>
<td>$(0.7)^4$</td>
<td>$1.9 \cdot 10^4$</td>
</tr>
<tr>
<td>$b\bar{b}b\bar{b}$ background</td>
<td>19661.5</td>
<td>3.5</td>
<td>$1.38 \cdot 10^6$</td>
<td>$(0.7)^4$</td>
<td>$5.75 \cdot 10^4$</td>
</tr>
<tr>
<td>$b\bar{b}c\bar{c}$ background</td>
<td>52053.3</td>
<td>3.5</td>
<td>$3.67 \cdot 10^6$</td>
<td>$(0.7)^4 \cdot (0.3)^2$</td>
<td>$3.3 \cdot 10^4$</td>
</tr>
<tr>
<td>$b\bar{b}t\bar{t}$ background</td>
<td>3.78</td>
<td>0.55</td>
<td>41.8</td>
<td>$(0.7)^4$</td>
<td>$6.2 \cdot 10^{-2}$</td>
</tr>
</tbody>
</table>

Table 4.1: Cross sections and number of events per year for signal and backgrounds. This table clearly shows that $b\bar{b}t\bar{t}$ can be neglected.

The cross section for signal events is an estimation for Higgs production with a mass around 120 GeV in the MSSM (see Ref.[3]), assuming that the branching ratio to four b is equal to one. An analysis of the effect of the variation of the number of events is made in Section 4.7. The background cross section are computed by Alpgen. We clearly see that the $b\bar{b}t\bar{t}$ background contribution is negligible because its cross section is small and nearly none of them actually passes the cuts. The fourth column is the expression of the fact that the detector will not recognize correctly every b jet as explained in 2.2.1.

4.6 Muons plots

For completeness, we shall take a look at the muon decay of the b-hadrons, as suggested in [1], where the LHCb muon trigger is described as an advantage for our study. Figure 4.12 shows the transverse momentum distributions of the muons produced by the collision. The good muons are the ones directly coming from the decay chain of an a. We can see that the P_t is a little bit smaller for the good muons but the difference is too small to have a real signification. The shapes of the distributions are approximately the same.
For an event to be saved, the LHCb \(L_0 \) trigger needs to detect, among other things, a muon with a \(P_t > 1.1 \) GeV. This could lead to the imposition of another cut which will decrease the number of events waited per year.

It is interesting to notice that only 389 signal events over the 10'000 generated contain muons. Besides, only 745 signal events have produced 4 \(b \) quarks inside the (enlarged) acceptance. Among those events, 327 contain at least one muon inside the acceptance with a \(P_t > 1.1 \) GeV. Therefore, if we trigger the production of 4 \(b \) quarks (from the signal) inside the acceptance with muons, the efficiency is about 44%, meaning that 44% of the signal events producing 4 \(b \) inside the acceptance will actually be saved to disk. The percentage is roughly the same (about 35%) for both types of background events.

Figure 4.12: *Transverse momentum of the muons directly coming from the decay chain of an \(a \) (top) and of all the muons (bottom).*
4.7 Extraction of the signal: a Toy Monte-Carlo study

The Toy Monte Carlo (TMC) procedure is a method to test the sensibility of our analysis to the variation of the number of signal events. Indeed, the number of signal events varies according to the model considered along with the mass of the a and of the Higgs.

The TMC method is used to simulate many "LHCb experiments". For each of those "experiments", we randomly generate a number of signal events, keeping the background at the average value (plus statistical variations). The number of signal events is changed from $1/10$ to 3 times the number of events per year seen before. We reproduce 100 experiments for each value of signal and background events. The Higgs mass is fixed for this procedure and the shape of the background is supposed to be known. In reality, when dealing with experimental data, a scan is made on the Higgs mass. Here, a fit of signal plus background is perform by the Minuit algorithm (without normalization of the total number of events). The goal is to determine the efficiency of the signal extraction from this fit. The significance depends on the number of signal events used for the fit.

4.7.1 A statistical enhancement trick

We have generated $5'000$ signal events for this analysis. Only 385 of these events contain four b quarks inside the LHCb acceptance. Applying the cuts (see equations 4.3 and 4.4), only 217 events remain. This number roughly corresponds to $\frac{1}{10}$ of a running year of LHCb. It would be interesting to increase this number of events for the TMC analysis4. An obvious way to do that would have been to generate more events, but the time needed to generate enough events is long. Therefore, we use another way to "increase" the statistics by smoothing the curves used for the TMC. Doing so, we do loose some information but the global shape of the distributions remains the same. This approach is quite conservative because the smoothing could only destroy some specificity of the curves that would have been useful for discrimination. The effect of smoothing can be seen in figure 4.13.

Thanks to this procedure, we assume that we have gained about one order of magnitude in statistics.

4for our simulated "experiments" to correspond to a time around ten times longer, ie about 1 running year.
4.7.2 TMC results

Figure 4.14 (left) gives an example of a mass plot for a particular experiment while figure 4.14 (right) shows, for 100 experiments, the deviation from truth of the fitted number of signal events for each experiment.

Figure 4.13: Effect of the smearing realized to mimic a higher number of events for the Toy Monte Carlo. The curves are smoothed. Top: original distributions. Middle: smoothed distributions. Bottom: negative values suppressed.
Figure 4.14: Example of mass distribution obtained for one LHCb "experiment" (left). The backgrounds are represented in red in addition with the signal, which is in green at the bottom. The black error bars represent the total number of generated events, with 1900 signal events generated. The plot on the right represents the distribution of the deviation of the number of signal events reconstructed, from the number of signal events generated (for 100 LHCb experiments).

The r.m.s of the deviation distributions for 100 experiments as a function of the average number of events generated in each experiment is given in figure 4.15 (top). The most interesting results is given by figure 4.15 (bottom) which shows that if the level of Higgs production is the one predicted by the MSSM, a significance of 10σ could in principle be reached after 1 LHCb running year\(^5\).

\(^5\)Here, once again, an enlarged acceptance has been used: $15 < \theta < 390$ mrad. Further studies will be made with $15 < \theta < 300$ mrad.
Figure 4.15: R.m.s. of the deviation of the number of reconstructed signal events from the number of generated ones, as a function of the number N of signal events generated (top). The significance N/σ_N corresponds to the r.m.s. σ_N of the deviation histograms (in black) or to the error resulting from the fit (in red) (bottom). The MSSM value for 1 running year is the vertical red line.
Chapter 5

Conclusion

This work was dedicated to the study of the $h^0 \to aa \to b\bar{b}b\bar{b}$ process at LHCb. Three main sources of four b quarks backgrounds have also been included. The standalone computer program PYTHIA was used to generate signal events while ALPGEN was used for the backgrounds generation.

First, we have discussed jet reconstructions based on the cone algorithm and we have given a method to combine them into pairs. Then, a and Higgs candidates have been reconstructed. Next, an event selection procedure has been presented to discriminate between signal and background events. Finally, a TMC was used to test the ability to extract signal events and it has been shown that, at the level of Higgs production predicted by the MSSM, a significance of 10 σ could in principle be reached for 1 LHCb running year1.

This study has been made only at the quadrivector level. Therefore, the next step would be to incorporate all detectors effects including the interactions with the magnetic field in a full simulation. Situations were signal and background quarks are both present inside the acceptance must also be investigated. Basing ourselves on what was presented here, we can conclude that there seems to be a possibility to detect the Higgs boson at LHCb and this opportunity must be further investigated.

\footnote{1}and with the enlarged acceptance defined before.
Appendix A

ALPGEN parameters

<table>
<thead>
<tr>
<th>Parameter and explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>imode, 1 generates weighted events and writes to file for later unweighting</td>
<td>1</td>
</tr>
<tr>
<td>Label for the produced files</td>
<td>bbcc</td>
</tr>
<tr>
<td>Grid: The generator will use a new grid</td>
<td>0</td>
</tr>
<tr>
<td>Number of events per iteration and number of warm-up iterations</td>
<td>1000000000</td>
</tr>
<tr>
<td>Number of events generated after warm-up</td>
<td>2</td>
</tr>
<tr>
<td>ihvy: choose the heavy flavour type, here c quark</td>
<td>4</td>
</tr>
<tr>
<td>ihvy2: same as before to insure bbcc production</td>
<td>4</td>
</tr>
<tr>
<td>ebeam: beam energy in the center of mass frame</td>
<td>7000.0</td>
</tr>
<tr>
<td>ih2: Select pp collisions</td>
<td>1</td>
</tr>
<tr>
<td>ndns: Parton density function, CTEQ5L * is used</td>
<td>5</td>
</tr>
<tr>
<td>njets: Number of light jets</td>
<td>0</td>
</tr>
<tr>
<td>etabmax: Pseudo rapidity η maximum of b quarks</td>
<td>4.5</td>
</tr>
<tr>
<td>etacmax: Pseudo rapidity η maximum of c quarks</td>
<td>4.5</td>
</tr>
<tr>
<td>drbmin: ΔR minimum between b quarks</td>
<td>0.1</td>
</tr>
<tr>
<td>drcmin: ΔR minimum between c quarks</td>
<td>0.1</td>
</tr>
<tr>
<td>ptbmin: Minimum transverse momentum of b quarks</td>
<td>10</td>
</tr>
<tr>
<td>ptcmin: Minimum transverse momentum of c quarks</td>
<td>10</td>
</tr>
</tbody>
</table>

Table A.1: Chosen parameters for the first generation phase in ALPGEN. These are the parameters for the bbcc component of the background leading to 539,679 events generated.
<table>
<thead>
<tr>
<th>Parameter and explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>imode, 1 generates weighted events and writes to file for later unweighting</td>
<td>1</td>
</tr>
<tr>
<td>Label for the produced files</td>
<td>btt</td>
</tr>
<tr>
<td>Grid: The generator will use a new grid</td>
<td>0</td>
</tr>
<tr>
<td>Number of events per iteration and number of warm-up iterations</td>
<td>1000000 2</td>
</tr>
<tr>
<td>Number of events generated after warm-up</td>
<td>10000000</td>
</tr>
<tr>
<td>ihvy: choose the heavy flavour type, here t quark</td>
<td>6</td>
</tr>
<tr>
<td>ihvy2: same as before to insure btt production</td>
<td>6</td>
</tr>
<tr>
<td>ebeam: beam energy in the center of mass frame</td>
<td>7000.0</td>
</tr>
<tr>
<td>ih2: Select pp collisions</td>
<td>1</td>
</tr>
<tr>
<td>ndns: Parton density function, CTEQ5L * is used</td>
<td>5</td>
</tr>
<tr>
<td>njets: Number of light jets</td>
<td>0</td>
</tr>
<tr>
<td>etabmax: Pseudo rapidity η maximum of b quarks</td>
<td>4.5</td>
</tr>
<tr>
<td>drbmin: ΔR minimum between b quarks</td>
<td>0.1</td>
</tr>
<tr>
<td>ptbmin: Minimum transverse momentum of b quarks</td>
<td>10</td>
</tr>
</tbody>
</table>

Table A.2: Chosen parameters for the first generation phase in Alpgen. These are the parameters for the btt component of the background leading to 117'676 events generated.

Example of input file used for phase one:

1 ! imode
bbbb ! label for files
0 ! start with: 0=new grid, 1=previous warmup grid, 2=previous generation grid
10000 2 ! Nevents/iteration, N(warm-up iterations)
100000 ! Nevents generated after warm-up
** The above 5 lines provide mandatory inputs for all processes
** (Comment lines are introduced by the three asterisks)
** The lines below modify existing defaults for the hard process under study
** For a complete list of accessible parameters and their values,
** input 'print 1’ (to display on the screen) or 'print 2’ to write to file
ihvy 5
ihvy2 5
ebeam 7000.0
ih2 1
ndns 5
njets 0
etabmax 4.5
drbmin 0.1
ptbmin 10

Phase two is simply initiated by:

2 ! imode
bbbb ! label for files
Appendix B

Other plots

Figure B.1: Transverse momentum of the a candidates from the signal (black) and $b\bar{b}c\bar{c}$ background (red).
Figure B.2: Comparison between two different methods of jets combinations.
Bibliography

[5] AURELIO BAY and CEDRIC POTTERAT, A b jet "seed" finder, LHCb-INT-2009-023 V. 1, Laboratoire de Physique des Hautes Energies, EPFL, October 2009

[6] PIERRE JATON, Recherche d’une particule SuperSymétrique à LHCb avec violation de la R-parité : le neutralino \(\tilde{\chi}_1^0 \), Projet de Master, Laboratoire de Physique des Hautes Energies, EPFL, automne 2008

