LHCb measurements of J/ψ and open charm cross-sections at $\sqrt{s} = 13$ TeV

Ilya Komarov and Dominik Müller

on behalf of the LHCb collaboration

1. Motivation

Measurements of production cross-sections of prompt J/ψ, J/ψ-from-b hadrons [1], and prompt D^0, D^+, D^* and D^{**} [2] in early Run 2 data gave:

- New precise tests of QCD calculations in yet unobserved energy regions.
- Test cases for detector and a novel data processing.

The master relation

$$\frac{d^2\sigma(X)}{dp_T dy} = \frac{1}{\Delta p_T \Delta y} N(X \rightarrow f) \cdot \epsilon(X \rightarrow f) \cdot B(X \rightarrow f) \cdot L$$

2. The LHCb trigger system in Run 2

- TurboStream
 - Candidates out of trigger with offline-quality reconstruction.
 - Detector alignment and calibration in real time.
 - Analysis-ready candidates stored to disk with no need for additional offline reconstruction.
 - Faster and smaller event size on disk.
 - Candidate to become default procedure in Run 3.

- Data are fitted to extract the signal yield in each $p_T < y$ bin.

- Fit distributions in m_c^2 or t_{2} to separate prompt and secondary mesons.

Efficiencies estimated partly from data-driven techniques, partly from simulation.

3. Analysis strategy

- Measured differential and integrated production cross-sections and their ratios at different, \sqrt{s} and between different mesons.
- Compared with three sets of NLO predictions.
- Uncertainty dominated by systematic sources: tracking, luminosity, particle identification.
- Ratios between different mesons agree with results at e^+e^- colliders.

4. 13 TeV to 7(8) TeV cross-section ratios

- Correlated systematic uncertainties cancel for both measurements and theoretical predictions.
- Sensitive to choice of PDF in QCD predictions [3].

Theoretical uncertainties in charm NLO predictions of e^+-production

- Measured $\sigma_{J/\psi}$ for prompt J/ψ and J/ψ-from-b and their ratio.
- Measured integrated production cross-section: $\sigma_{J/\psi}$ (prompt) = 15.30 ± 0.03(stat) ± 0.86(syst)μb
- $\sigma_{J/\psi}$ (from-b) = 2.34 ± 0.01(stat) ± 0.13(syst)μb
- Uncertainty is dominated by systematic sources: luminosity, trigger efficiency, muon identification and others.
- Measured ratio of 13 TeV to 8 TeV results.

5. Results for $D^0 \rightarrow K^-\pi^+$ [2]

Double differential cross-section for D^0

6. Results for $J/\psi \rightarrow \mu^+\mu^-$ [1]

Cross-section for prompt J/ψ

Fractions of J/ψ-from-b

Integrated cross-section in fiducial region

13 TeV to 8 TeV ratio compared with theory
