MCP photon detectors studies for the TORCH detector

Lucía Castillo García
On behalf of the TORCH Collaboration (CERN, Bristol and Oxford Universities)

Ring Imaging Cherenkov Detectors session - 2nd July 2014
Introduction to TORCH

Photon detector characterization:
- Commercial MCP devices performance with single-channel and custom multi-channel front-end electronics
- Custom MCP devices performance with single-channel electronics

Simulation and optical studies

Beam test preparation

Conclusions and perspectives
TORCH detector

- **Time Of internally Reflected Cherenkov light (TORCH)**
 - a proposed precision Time-of-Flight (TOF) detector for particle identification (PID) at low momentum
 [R. Forty, 2014 JINST 9 C04024]
 - Motivation for TORCH development is LHCb upgrade
 [CERN-LHCC-2011-001]
 - Measure the TOF of charged-particle tracks with 12.5ps precision/track
 - Path length reconstruction \rightarrow ~1mrad precision required for (θ_x, θ_z)
 - Photon propagation time in quartz \rightarrow crossing time

[Image of quartz plate with track, detected photon, and Focusing block mirror]

- Path length reconstruction: $L = \frac{h}{\cos \theta_z}$
- Photon propagation time in quartz: crossing time
- Track dimensions: 6m × 5m
- Total internal reflection of photons
- Quartz plate thickness: ~1cm
Photon detectors requirements

- Single photon sensitivity \(\rightarrow\) MCPs best for fast timing of single photons

- Development of photon detectors with **finely segmented anode** (8x128 channels)
 - Propagation angle projected on the quartz plate \((\theta_x)\) \(\rightarrow\) coarse segmentation (~6mm) sufficient
 - Propagation angle \((\theta_z)\) \(\rightarrow\) fine segmentation (~0.4mm) \(\rightarrow\) 50ps smearing of photon propagation time due to pixellization

- **Arrival time precision of \(\leq 50\text{ps}\)** for single photon signal at a gain of \(\sim 5 \times 10^5\)

\[
\sqrt{\sigma_{\text{pixellization}}^2 + \sigma_{\text{timing}}^2} \sim 70\text{ps} / \text{detected photon}
\]

- **Lifetime aspects:**
 - detected photon rate: 1-10MHz/cm²
 - Integrated anode charge per year: 1-10C/cm²
TORCH R&D project

- 4 year TORCH R&D project awarded by ERC, started 2 years ago (collaboration between CERN, Bristol and Oxford Universities)

 - Proof-of-principle with a prototype TORCH module

- Development of suitable MCP photon detectors with industrial partner: Photek (UK)

 - 1st phase: Circular MCP with extended lifetime (~5C/cm²)
 - Atomic layer deposition (ALD) coating

 - 2nd phase: Circular MCP with fine granularity
 - Modelling studies to achieve the required granularity

 - 3rd phase: Final square MCP with extended lifetime and fine granularity
 - High active area (>80%)
Commercial MCP devices (Photonis)

- Initial tests with commercial devices
 - Poster @NDIP11 showed tests with single-channel electronics → TTS ≤ 40ps in single photon regime and MCP gain 5×10^5 [L. Castillo García, Nucl. Instr. Meth. A 695 (2012) 398]
 - Custom multi-channel electronics → beam and laboratory tests (see later)

- Photon detectors from Photonis:
 - 8x8 array Planacon MCP (test tube)
 - Single-channel MCP (as time reference)

- Using custom multi-channel front-end electronics: [R. Gao et al., 2014 JINST 9 C02025]
 - fast amplifier and Time-Over-Threshold (TOT) discriminator (NINO8 ASIC) [F. Anghinolfi et al., Nucl. Instr. and Meth. A 533 (2004) 183]
MCP 8x8array Planacon

- Single photon regime: 0.5 photoelectrons on average per pulse
- Modest Planacon gain (6×10^5) → for lifetime aspects
- Planacon large input gap → long back-scattering tail

Single-channel electronics

START signal: time reference from laser sync. signal
STOP signal: Planacon pad

\[\sigma_{\text{single-channel electronics}} \approx 38 \text{ps} \]

Custom front-end electronics (NINO8+HPTDC)

START signal: time reference from single-channel MCP
(<20ps) coupled to CFD and injected on a test channel of the NINO8+HPTDC electronics
STOP signal: Planacon

\[\sigma_{\text{NINO+HPTDC}} \approx 77 \text{ps} \]

[Experimental data, Data fit, 1st Gaussian, 2nd Gaussian]

LOG scale!

Counts

Laser effect

Back-scattering effect

\[(t_{b-s})_{\text{MAX}} \approx 1.5 \text{ns} \]

Without time walk correction and INL calibration of HPTDC chip 83% efficiency → NINO8 threshold not optimal

Custom MCP devices (Photek) - 1st phase

- 5 single-channel MCP-PMT225 with extended lifetime have been manufactured
 - Using ALD process coating on MCP
- Some devices have already been successfully characterized through accelerated ageing tests

- Initial MCP gain set to 10^6
- Total accumulated anode charge: 5.16C/cm^2
- 30% reduction in MCP gain
- No reduction in QE \rightarrow no photocathode degradation

![Graph showing ALD coated MCP-PMT Life Test with Uncoated Control]
Custom MCPs characterization

- PMT225/SN G1130510
- Dark count rate: 3.3kHz
- Modest gain 3×10^5 @-2200V
- PHS $\rightarrow \mu \sim 0.35$ photoelectrons
- TTS $\rightarrow \sigma \sim 23ps$

- Excellent timing performance \rightarrow single-channel MCP
- Other 4 tubes show similar performance
QE and ageing tests at CERN

- **QE experimental setup**

 ![Experimental setup](image)

 - Light-tight box (MCP and reference photodiode)
 - Monochromator + filter wheel
 - Xe lamp
 - Picoampmeter /voltage source
 - Optical power meter

- **One custom MCP tube is currently under ageing test**
 - High dark count rate tube
 - Regularly monitoring of QE, gain and other parameters
 - After 0.5C/cm² no visible QE degradation, gain drop of 20% → in agreement with Photek tests

QE curves before ageing

QE curves after 0.5C/cm²
Custom MCP devices (Photek) – 2nd phase

- Modelling studies on-going to achieve required granularity
- 8x64 sufficient if charge-sharing between pads is used → Improve resolution and reduce number of channels
- Simulated spatial resolution in the fine direction using charge-sharing (NINO+HPTDC electronics) as function of MCP gain and NINO threshold

 \[\text{[J.S. Milnes et al., NIM A (2014), http://dx.doi.org/10.1016/j.nima.2014.05.035]}\]

- Strong dependence on MCP gain and NINO threshold
- Resolution degradation at higher thresholds
- Operate at 10^6 MCP gain to achieve the required resolution
Simulation

- **Geant4 software framework**

- **Idealised TORCH detector**
 - All photons arriving at the photo-detector plane are registered

- **Photon loss factors:**
 - Rough surface
 - Rayleigh scattering
 - Quartz spectral cut off
 - EPO-TEK glue spectral cut off
 - Mirror in focusing block
 - Quantum efficiency
 - Collection efficiency

Event display for a single 10 GeV K+ crossing

Relative impacts

Photon generation

EPO-TEK 305

QE

EPO-TEK 301-2 (BaBar)
Optical studies

- Aim: measure and optimize transmission in UV region for radiator/optics coupled with UV epoxy glue
- Transmission curves for Quartz windows:
Beam test preparation

- Beam test periods:
 - SPS at CERN in October-November 2014 (high momentum beam: $p_{max} = 400 GeV/c$)
 - PS at CERN in December 2014 (low momentum beam)

- TORCH prototype:
 - Radiator plate (10x120x350mm³) and focusing prism → Fused Silica
 - 2 photon detectors on focal plane → various MCPs to be used
 - Radiator glued to optics
 - Air gap between optics-photon detectors
 - Optics ordered → final design ready, under manufacturing

- New electronics development on-going
 - design new board NINO32+HPTDC
 - improve channel density
 - possible integration of INL calibration and time walk correction
Conclusions and perspectives

- TORCH is an innovative detector proposed to achieve $\pi - K$ separation in the momentum range below $10\, GeV/c$

- Development of suitable photon detectors over a 3-phases R&D programme
 - 1st phase \rightarrow COMPLETED
 - 2nd phase \rightarrow ON-GOING
 - 3rd phase \rightarrow next year
 - Finally, demonstration of TORCH concept with a prototype module

- Simulation studies on-going

- Development of next-generation custom front-end electronics (NINO32) on-going

- Beam tests foreseen end of 2014

- Further information \rightarrow http://torch.physics.ox.ac.uk
TORCH detector

- It combines TOF and Ring Imaging Cherenkov (RICH) detection techniques

\[\Delta TOF (\pi - K) = 37.5 \text{ ps at 10 GeV/c over a distance of } \sim 10 \text{m} \]

- PID system to achieve positive \(\pi/K \) separation at a 3\(\sigma \) level in the momentum range below 10\(GeV/c \)

- 30 detected photons/track \(\rightarrow \) Overall resolution per detected photon: \(\sim 70 \text{ps} \)

- Cherenkov light production is prompt \(\rightarrow \) use quartz as source of fast signal

- Single photon sensitivity
How to determine the TOF?

- Why do we measure θ_C?
 \[\cos \theta_C = 1/n\beta \]

\[
TOF = t_{TORCH} - t_{PV} = \frac{|x_{TORCH} - x_{PV}|}{\beta c} \quad t_{TORCH} = t_{photon\ arrival} - TOP
\]

- Correct for the chromatic dispersion of quartz: $n(\lambda)$
 - Cherenkov angle \rightarrow phase velocity: \[\cos \theta_C = 1/\beta n_{phase} \]
 - Time of Propagation (TOP) \rightarrow group velocity: \[TOP = path\ length \frac{n_{group}}{c} \]

- $\theta_C \rightarrow n_{phase} \rightarrow \lambda \rightarrow n_{group} \rightarrow TOP \rightarrow t_{TORCH}$ (crossing time)

- To obtain the TOF, we need the start time t_{PV}
 - Use other tracks from PV, most of them are pions $\rightarrow t_{PV}$: average time assuming they are all pions
TORCH detector

- Unrealistic to cover with a single quartz plate → evolve to modular layout

- For LHCb, surface to be instrumented is ~5x6m² at z=10m

- 18 identical modules, each 250×66×1cm³ → ~300 litres of quartz in total

- Reflective lower edge → photon detectors only needed on upper edge

 18 × 11 = 198 units, each with 1024 pads → 200k channels in total
Application: LHCb experiment

- Motivation for TORCH development is LHCb upgrade
 - Luminosity: $2 \cdot 10^{33} \text{cm}^{-2}\text{s}^{-1}$
 - Event read out rate increased to 40MHz

- Currently, PID provided by two RICH detectors with three radiators (Silica aerogel, C_4F_{10}, CF_4) covering a momentum range from $\sim 2\text{GeV}/c$ up to $100\text{GeV}/c$

- PID Upgrade:
 - Silica aerogel will not give a good performance (low photon yield <10 detected photons/saturated track) → To be removed and possibly replaced later by TORCH

[CERN-LHCC-2011-001]

![Diagram of LHCb experiment](image)
Photon detector:
- 8x8 channels MCP-PMTs (Burle/Photonis)

XP85012/A1 specifications:
- MCP-PMT planacon
- 8x8 array, 5.9/6.5 mm size/pitch
- 25 μm pore diameter, chevron configuration (2), 55% open-area ratio
- MCP gain up to 10^6
- Large gaps:
 - PC-MCPin: ~ 4.5mm
 - MCPout-anode: ~ 3.5mm
- 53 mm x 53 mm active area, 59 mm x 59 mm total area \rightarrow 80% coverage ratio
- Total input active surface ratio \leq 44%
- Bialkali photocathode
- Rise time 600 ps, pulse width 1.8 ns
- HV applied 2.6 kV (1.75 kV across the MCP)
Single-channel MCP tube (Photonis)

- Photon detector:
 - single channel MCP-PMT (Photonis NL)

- PP0365G specifications:
 - MCP-PMT tube
 - single channel (SMA connector)
 - 6µm pore diameter, chevron type (2), ~55% open-area ratio
 - low MCP gain typ. <10⁵
 - Small gaps:
 - PC-MCPin: 120µm
 - MCPout-anode: 1mm
 - S20 photocathode on quartz
 - 18mm active diameter
 - 6pF anode capacitance
 - Rise time 20-80% >700ps
 - HV applied 2.93kV (1.95 kV across the MCP) filter and bleeder chain 1+(1-10-3)
Custom MCP device (Photek)

- Photon detector:
 - single channel MCP-PMT225 (Photek Ltd)

- PMT225 SN-G specifications:
 - MCP-PMT tube
 - single channel (SMA connector)
 - 10µm pore diameter, chevron type (2), ALD coated
 - MCP gain typ. 10^6
 - Small gaps:
 - PC-MCPin: 200µm
 - S20 photocathode on quartz
 - 25mm active diameter
 - Rise time 360 ps
 - HV applied 2.25 kV (1.2 kV across the MCP)
MCP photon detectors tests - Summary

<table>
<thead>
<tr>
<th></th>
<th>8x8array Planacon MCP (Photonis)</th>
<th>Single-channel MCP (Photonis)</th>
<th>Single-channel MCP (Photek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pore diameter [μm]</td>
<td>25</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>PC-MCP/MCP-anode gaps</td>
<td>large</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>Photocathode</td>
<td>Bialkali on borosilicate</td>
<td>S20 on quartz</td>
<td>S20 on quartz</td>
</tr>
<tr>
<td>Typical MCP gain</td>
<td>10^6</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>Time resolution [ps]</td>
<td>Single-channel electronics: <40</td>
<td><40</td>
<td><30</td>
</tr>
<tr>
<td></td>
<td>Multi-channel electronics: <80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: *single photon regime*
- Single-channel ORTEC electronics

Light calibration setup:
- Pulse height spectra (PHS)
- Standard Poisson distribution to fit data
- Average number of photoelectrons per pulse (μ) inferred from $P(0)$

\[
N: \text{number of photoelectrons per pulse}
\]

\[
P_\mu(N) = \frac{\mu^N}{N!} e^{-\mu} = \frac{A_N \sigma_N \sqrt{2\pi}}{\text{total surface}}
\]

N-photoelectron peak width scales as:

\[
\sigma_{N\text{phe}} = \sqrt{N} \sigma_{1\text{phe}}
\]

where $\sigma_{1\text{phe}}$ is the 1-photoelectron peak width
Experimental setup

- Pulsed blue (405nm) laser diode @1KHz (20ps FWHM, sync<3ps)
- Monomode fibers
- ND filters: single photon regime
- Single-channel ORTEC electronics

Light calibration setup:
- Pulse height spectrum (PHS)
- Standard Poisson distribution to fit data
- Average number of photoelectrons per pulse (µ) inferred from P(0)

Timing setup:
- Time jitter distribution
- Exponentially-modified Gaussian distribution to fit prompt peak → time resolution (σ)
Discriminator behaviour

- For a given discriminator threshold:
 - The noise induces a **jitter** → signal is detected earlier or later in time
 - The signal height variation induces a **walk**:
 - Large signals are detected earlier
 - Small signals are detected later

- **Constant Fraction discriminator:**
 - Based on zero-crossing techniques
 - Large amplitudes:
 + walk → earlier / -walk → later
 - Smaller amplitudes:
 + walk → later / -walk → earlier
 - Produce accurate timing information from analog signals of varying heights but the same rise time
 - Principle: splitting the input signal, attenuating half of it and delaying the other half, then feeding the two halves into a fast comparator with the delayed input inverted
 - Effect: to trigger a timing signal at a constant fraction of the input amplitude, usually around 20%
Contributions to MCP timing response

- **Laser effect:**
 - Second relaxation pulse clearly seen after \((150 \pm 50)\) ps on laser timing profile \(\rightarrow\) visible on MCPs time response resulting in a shoulder after the main peak.

- **Back-scattered photoelectrons:**
 - Maximum back-scattered time (elastically at 90° with MCP input surface):
 \[
 (t_{\text{back-scattered}})_{\text{MAX}} = 2 \times t_{\text{transit}}
 \]
 - Maximum back-scattered spatial range (elastically at 45° with MCP input surface):
 \[
 (d_{\text{back-scattered}})_{\text{MAX}} = 2 \times \text{MCP input gap}
 \]

[Diagram showing PiLas test ticket with data indicating 60% (FWHM ~ 21 ps) optimal.]
Single-channel timing fitting model

- Single-channel MCP investigated at several light intensities and laser tune setting [L. Castillo García, LHcb-INT-2013-042]
- Main peak of timing distributions represents the MCP intrinsic time response \(\rightarrow \) fitted with an exponentially-modified Gaussian distribution [I. G. McWilliam, H. C. Bolton, Analytical Chemistry, Vol. 41, No. 13, November (1969) 1755-1762]

\[
f(t, A, t_c, \sigma_g, \tau) = \frac{A}{\tau} \exp \left(\frac{1}{2} \left(\frac{\sigma_g}{\tau} \right)^2 - \frac{t - t_c}{\tau} \right) \left(\frac{1}{2} + \frac{1}{2} \text{erf} \left(\frac{t - t_c}{\sigma_g \sqrt{2}} \right) \right)
\]

\(t \): time, \(A \): amplitude, \(t_c \): centroid at maximum height of the unmodified Gaussian, \(\sigma_g \): standard deviation of the unmodified Gaussian, \(\tau \): time constant of exponential decay used to modify the Gaussian and \(\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt \).

- Model chosen given the **asymmetry in the MCP time response** for large values of \(\mu \).
- **Time jitter** value defined as the standard deviation \(\sigma_g \) of the Gaussian.
- Use to extract the timing resolution for Planacon MCP