The LHCb Inner Tracker

Marc-Olivier Bettler

SPS annual meeting Zürich 21 February 2007
LHC Large Hadron Collider

LHCb beauty physics
- Precision CP measurements
- Rare B-decays
- Single-arm spectrometer

Search for new Physics!

- p – p collider
- High Energy 14 TeV
- High Luminosity 10^{34} cm$^{-2}$ s$^{-1}$
 (at LHCb 2×10^{32} cm$^{-2}$ s$^{-1}$)

February 21 2006
Marc-Olivier Bettler
SPS Annual Meeting
LHCb sub-detectors

Tracking sub-detectors

February 21 2006
Marc-Olivier Bettler
SPS Annual Meeting
LHCb sub-detectors

Ring Imaging Cerenkov
LHCb sub-detectors

Calorimeters

February 21 2006 Marc-Olivier Bettler SPS Annual Meeting
LHCb sub-detectors

Muon Chambers
Inner Tracker: why?

IT is designed to keep OT occupancy below 10% while minimising Si surface.

- Cross shape around the beam pipe
- 1.3% of acceptance, 20% of the tracks
- approx. 4.3 m² of silicon
Inner Tracker: where?

A large part of the detector ‘dead material’ is within the acceptance

Use of light material
Mass reduced to minimum

Use of carbon- and glass-fiber
Metallic parts and cables shielding reduced to minimum
Inner Tracker: how?

4 detector boxes per station

2 boxes with two-sensors modules

2 boxes with one-sensor modules

4 silicon layers per box:
- 2 layers with vertical strips
- 2 layers with ± 5° rotated strips
IT module

- Hybrid and sensor glued on support
- Strips wire bonded

Front-End Hybrid with 3 radiation hard Beetle chips (0.25 µm CMOS)

Carbon fiber and foam sandwich structure with 25 µm kapton foil insulation

p+ on n bulk silicon detector
386 microstrips 198 µm pitch
320 and 410 µm thickness

168 one-sensor modules
168 two-sensors modules
Plus spares
IT module test

Burn-in test: 44 hours with 30 temperature cycles from -5°C to 40°C
Leakage current monitoring
Bad/open channel

IV curves

Sensor position metrology

February 21 2006
Marc-Olivier Bettler
SPS Annual Meeting
Tracking performance

February 21 2006
Marc-Olivier Bettler
SPS Annual Meeting

J. Borel, LPHE, EPFL
Two layers of modules are fixed on one cooling rod

Two Cooling rods fixed under the box cover

All the components are slid down in the box

And then:
• Readout check
• Survey
• Cooling circuit leaks

February 21 2006
Marc-Olivier Bettler
SPS Annual Meeting
IT and LHCb: when?

- Support frames are installed in the P8 pit
- The box assembly ongoing
- The commissioning of the first box soon
- Complete sub-detector in May

The Inner Tracker will be ready for the first collisions at the end of the year at injection energy
LHC Large Hadron Collider

ATLAS
- General purpose
- Higgs
- SUSY

- $p - p$ collider
- High Energy 14 TeV
- High Luminosity 10^{34} cm$^{-2}$ s$^{-1}$
- High Interaction rate 40 MHz
LHC Large Hadron Collider

CMS
- General purpose experiment
- Higgs boson
- SUSY evidences

- p – p collider
- High Energy 14 TeV
- High Luminosity $10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- High Interaction rate 40 MHz
LHC Large Hadron Collider

ALICE
- Pb-ions collision
- quark-gluon plasma

- Pb-Pb collider
- High Energy 1150 TeV
Outline

• LHCb at LHC

• The LHCb subdetectors

• Inner Tracker: why, where, how, when