

Sensitivities to the $B^0_s-\overline{B^0_s}$ Mixing Parameters using $\bar{b}\to \bar{c}c\bar{s}$ Quark Transitions at LHCb

Luis Fernández LPHE - EPF Lausanne

Neuchâtel, March 3rd, 2004 Swiss Physical Society Meeting

- $\begin{tabular}{ll} \& B^0_s \overline{B^0_s} & {
 m Mixing} \end{tabular}$
- Physics Motivations
- Likelihood, Physics Models
- Expected Sensitivities & Conclusions

The $B_s^0-\overline{B_s^0}$ system will serve to test the Standard Model (SM) description of CP violation, based on the CKM picture

- The \hat{V}_{CKM} matrix contains 4 independent weak phases $\beta^{(bd)} \equiv \beta_d$, $\gamma^{(bd)} \equiv \gamma_d$, $\beta^{(sd)} \equiv \chi'$ and $\beta^{(bs)} \equiv \beta_s \equiv \chi$
- These phases are in what we are interested in a CP-violating experiment
- $\ensuremath{\text{\textit{\&}}}$ The squashed (bs) triangle is relevant for the B^0_s system

$$V_{ub}^* V_{us} + V_{cb}^* V_{cs} + V_{tb}^* V_{ts} = 0, \quad \beta^{(bs)} \equiv \arg(-V_{cb} V_{cs}^* / V_{tb} V_{ts}^*)$$

where $V_{tb}^*V_{ts}$ controls $B_s^0 - \overline{B_s^0}$ oscillations

$$B_s^0 \text{--} \overline{B_s^0} \text{ mixing}$$

$$\Delta B = 2 \text{ transition}$$

$$\bar{b} \quad \frac{\overline{b}}{u,c,t} \quad \overline{s}$$

$$s \quad W^{-} \quad b$$

 $\ref{eq:continuous}$ The $B^0_s - \overline{B^0_s}$ weak mixing phase ϕ_s is expected to be small in the SM

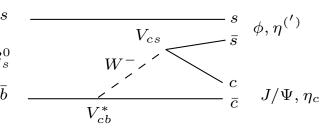
$$\phi_s \equiv 2 \arg \left[V_{ts}^* V_{tb} \right] \approx -2\lambda^2 \eta \approx -2\chi \sim \mathcal{O}(-0.04)$$

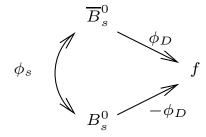
where $\lambda \equiv \sin(\theta_{\rm C})$ and η are Wolfenstein's parameters

FECULE POLYTECHNIQUE $ar{b} ightarrow ar{c}car{s}$ Quark Transitions

$$\Rightarrow B_s^0 \to J/\psi \phi$$
: admixture of CP eigenstates $(\eta_{J/\psi \phi} = +1, -1, +1)$

Decays dominated by only one CKM phase $\arg{[V_{cb}^*V_{cs}]} \equiv -\phi_D$ (penguin diagrams suppressed)





Due to the mixing, the flavor states $B^0_s - \overline{B^0_s}$ can either remain unchanged and decay to f, or oscillate into each other, ...

"Mixing-induced" CP violation arises from a phase mismatch (ϕ_{CKM}) between the weak mixing phase $\phi_s \equiv 2\arg\left[V_{ts}^*V_{tb}\right]$ and the tree phase $\phi_D \equiv \arg\left[V_{cb}V_{cs}^*\right]$

 $\phi_s \approx -2\chi \leftrightarrow strange$ counterpart of $\sin{(2\beta_d)}$ measurement for B_d^0 ($\phi_d \approx 2\beta_d$)

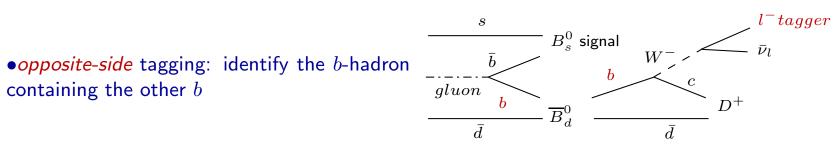
CP Asymmetry and Tagging

The study of CP violation implies the measurement of the time-dependent decay asymmetry $\mathcal{A}_{\mathrm{CP}}^{obs}(t)$ between the $\overline{B_s^0}$ and the B_s^0

$$\mathcal{A}_{\mathrm{CP}}^{obs}(t) \equiv \frac{R\left(\overline{B_s^0}(t) \to f\right) - R\left(B_s^0(t) \to f\right)}{R\left(B_s^0(t) \to f\right) + R\left(\overline{B_s^0}(t) \to f\right)}$$

with t the proper time, R the observed decay rates and f = f

- \aleph When a signal B is observed, we need to know the initial flavor of the reconstructed $mesons \Rightarrow flavor tagging$



- \bullet same-side tagging: use the companion of the b quark in the signal B
- \gg The tagging procedure does not always give an answer: tagging efficiency ε_{tag}
- Even if there is a tag, our identification could be incorrect: wrong tag ω
- \Rightarrow The tagging will *dilute* the theoretical asymmetry $\mathcal{A}_{\mathrm{CP}}^{th}(t)$ with a factor D

$$\mathcal{A}_{\mathrm{CP}}^{obs}(t) = D \cdot \mathcal{A}_{\mathrm{CP}}^{th}(t)$$

which reduces to $D=(1-2\omega)$ for a perfect resolution and no background

Physics Motivations of $\bar{b} \to \bar{c}c\bar{s}$ Transitions

The mixing-induced CP asymmetry for a given CP eigenstate (with eigenvalue η_f) directly measures ϕ_s (tree phase $\phi_D \approx 0$)

$$\mathcal{A}_{\mathrm{CP}}^{th}(t) = \frac{-\eta_f \sin(\phi_s) \sin(\Delta M_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2}) - \eta_f \cos(\phi_s) \sinh(\frac{\Delta \Gamma_s t}{2})}$$

where $\Delta M_s \equiv M_{\rm H} - M_{\rm L}$ and $\Delta \Gamma_s \equiv \Gamma_{\rm L} - \Gamma_{\rm H}$ are the mass and decay width differences of the physical (mass) eigenstates $\left|B_{\rm L/H}\right> = p \; \left|B_s^0\right> \pm q \; \left|\overline{B_s^0}\right>$

- Physics Motivations: measure the mixing parameters
- extract $\Delta M_s \sim \mathcal{O}(20)~\mathrm{ps^{-1}}$ and $\Delta \Gamma_s/\Gamma_s \sim \mathcal{O}(10\%)$, with $\Gamma_s \equiv (\Gamma_\mathrm{H} + \Gamma_\mathrm{L})/2$ the average decay width $(\tau_{B_s^0} = 1/\Gamma_s = 1.46~\mathrm{ps})$
- probe the B_s^0 - $\overline{B_s^0}$ weak mixing phase ϕ_s , expected to be small in the SM $\sim \mathcal{O}(-0.04)$
- \Rightarrow B_s^0 system represents a prime candidate for the discovery of New Physics

SUSY contributions (mainly induced by gluino exchange) to the $B_s^0 - \overline{B_s^0}$ transitions could drastically change the SM predictions (hep-ph/0311361):

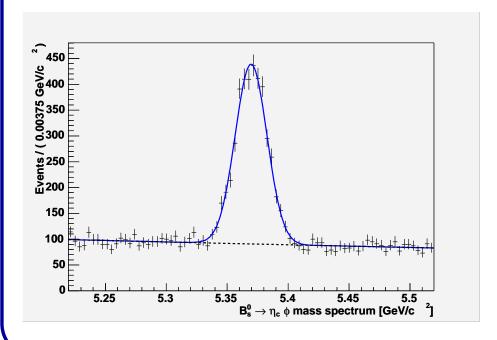
$$\sin(\phi_s) \sim \mathcal{O}(-1), \ \Delta M_s = (10 - 10^4) \,\mathrm{ps}^{-1}$$

Sensitivity Studies

- The sensitivities of LHCb to the CP B_s^0 observables are assessed by the use of fast toy Monte Carlo (MC) experiments using
 - $\Rightarrow B_s^0 \to J/\Psi(\mu^+\mu^-)\phi(K^+K^-)$
 - $A B_s^0 \to \eta_c(2\pi 2K, 4\pi)\phi(K^+K^-)$
 - $\Rightarrow B_s^0 \to J/\Psi(\mu^+\mu^-)\eta(\gamma\gamma)$
- The parameterizations used are obtained from the study of fully simulated and reconstructed MC events (see talk of Benjamin Carron)
 - \Rightarrow the computed per-event lifetime error σ_t is used in the fast simulation such that an experimental uncertainty is assigned to each generated event
 - \Rightarrow The tagging efficiency ε_{tag} and the mistag probability ω are taken from the full MC
- For $B^0_s \to J/\psi \phi$, the so-called transversity angle θ_{tr} is introduced to take into account the angular distribution of the two vectors in the final state
- Physics parameters: extracted using an "unbinned extended maximum" likelihood fit to the proper time and mass distributions (and to $\cos(\theta_{tr})$ for $J/\psi\phi$)
- The fit is simultaneously maximized with the control sample $B_s^0 \to D_s^- \pi^+$ which allows the determination of ΔM_s , ω and $\Delta \Gamma_s$

$$\mathcal{L} = \prod_{i \in B_s^0 \to f}^{N_{obs}} \left[f^{sig}(m^i) R^{sig}(t_{rec}^i, \sigma_t^i) + (1 - f^{sig}(m_i)) R^{bkg}(t_{rec}^i) \right]$$

- ightharpoonup
 ightharpoonup
 m Sig and bkg probabilities (f^{sig}, f^{bkg}) of an event are based on its reconstructed mass
 - ☆ gaussian shape for the signal
 - ☆ exponential shape for the background



 $B_s^0 \to \eta_c \phi$ mass distribution (with $\mathcal L$ fit projection superimposed)

Annual yield =
$$3$$
k $B/S = 0.8$ Mass resolution $\sigma_{B_s^0} = 13 {\rm MeV/c^2}$ True B_s^0 mass = $5369.6 {\rm MeV/c^2}$ Bkg $\mu_{bkg} = -0.6 {\rm MeV/c^2}$

Likelihood (2)

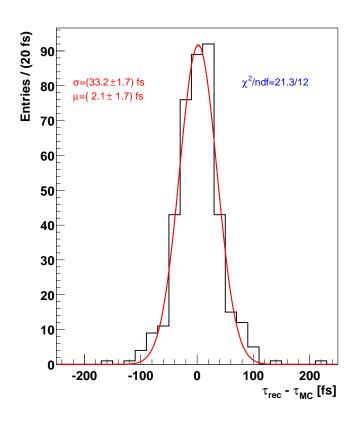
$$\mathcal{L} = \prod_{i \in B_s^0 \to f}^{N_{obs}} \left[f^{sig}(m^i) R^{sig}(t_{rec}^i, \sigma_t^i) + (1 - f^{sig}(m_i)) R^{bkg}(t_{rec}^i) \right]$$

 R^{sig} : observed signal decay rate

$$R^{sig}(t_{rec}^{i}, \sigma_{t}^{i} | \vec{\alpha}) = A(t_{true}^{i}) \left[(1 - \omega) \Gamma_{B \to f}(t_{true}^{i}, \vec{\alpha}) + \omega \Gamma_{\overline{B} \to f}(t_{true}^{i}, \vec{\alpha}) \right]$$
$$\otimes Res(t_{rec}^{i} - t_{true}^{i}, s_{1}\sigma_{t}^{i}, \mu_{1}\sigma_{t}^{i})$$

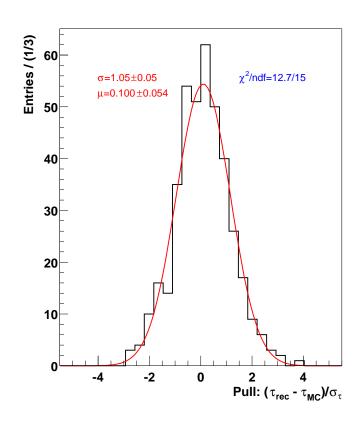
- Δ Γ : analytical decay rates
- $\vec{\alpha} = (\Delta M_s, \Delta \Gamma_s, ...)$: physics parameters
- ightharpoonup Res: Gaussian resolution scaled with σ_t^i
- A: flat acceptance
- R^{bkg} : background decay rate, exponential shape
- $ightharpoonup \ ext{For } B_s^0 o D_s^- \pi^+ ext{, } au_{bkg} pprox au_{B_s^0}/2$
- For $B_s^0 \to J/\psi \phi$, the signal likelihood is given by the sum of the CP-even and CP-odd components, including the corresponding θ_{tr} contribution

$B_s^0 \to \eta_c \phi$ Proper Time – Full Monte Carlo Simulation



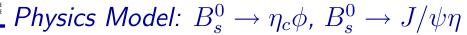
 B_s^0 proper time τ resolution:

$$\sigma \sim 33$$
 fs $au = m_{B_s^0} \ ec{p}_{B_s^0} \cdot ec{L}/\left|ec{p}_{B_s^0}
ight|^2$ $ec{L} = ec{x}_S - ec{x}_P$ decay length



Pull: ~ 1

 σ_{τ} : computed per-event error on τ using the tracks covariance matrices



- $P = \eta_c \phi, J/\psi \eta$ CP-even eigenstates: $(\mathcal{CP})|f\rangle = \eta_f |f\rangle$, $\eta_f = +1$
- ${\color{red} \& }$ Observed transition rates of initially pure B^0_s and $\overline{B^0_s}$ states (perfect resolution, no bkg)

$$R\left(B_s^0(t) \to f\right) = |A_f(0)|^2 \frac{e^{-1 s t}}{2} \times \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) - \eta_f \cos(\phi_s) \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) + D \eta_f \sin(\phi_s) \sin(\Delta M_s t)\right]$$

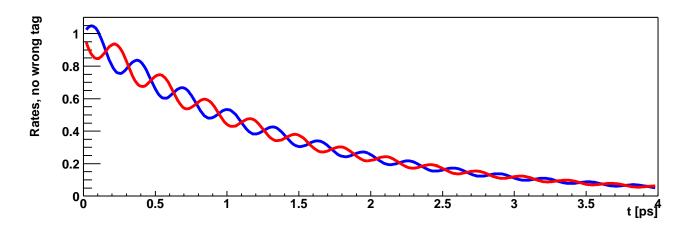
$$R\left(\overline{B_s^0}(t) \to f\right) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \times \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - \eta_f \cos(\phi_s) \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) - D \eta_f \sin(\phi_s) \sin(\Delta M_s t)\right]$$

- $\Delta D = (1 2\omega)$: dilution factor
- We get the corresponding analytical transition rates Γ by setting $\omega=0$ (i.e. no wrong tag) in the observed decay rates R

ECOLE POLYTECHNIQUE $B_s^0 o \eta_c \phi$, $B_s^0 o J/\psi \eta$ Decay Rates

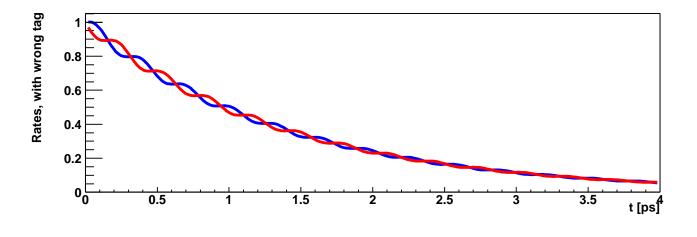
Decay rates for $B^0_s \to \eta_c \phi$ and $B^0_s \to J/\psi \eta$ in case of a perfect resolution

- $\Delta M_s = 20 {\rm ps}^{-1}, \, \Delta \Gamma_s / \Gamma_s = 0.1, \, \sin(\phi_s) = -0.1 \, \, ({\sf nominal} \, \sin(\phi_s) = -0.04)$



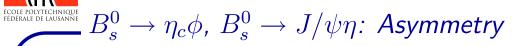
No wrong tag ω

→ perfect tagging



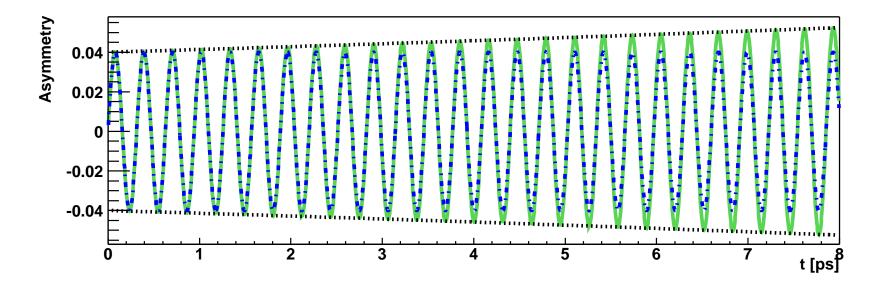
With wrong tag $\omega = 0.3$

→ wiggles are flattened



Asymmetry ${\cal A}_{\rm CP}(t)$ for $B^0_s \to \eta_c \phi$ and $B^0_s \to J/\psi \eta$ in case of a perfect resolution

- **№** Solid green: $\mathcal{A}_{\mathrm{CP}}$ with no mistag $\omega = 0$
- Notice Dotted black: envelope due to non-zero $\Delta\Gamma_s$
- $\Delta M_s = 20 \mathrm{ps}^{-1}, \ \Delta \Gamma_s / \Gamma_s = 0.1, \ \sin(\phi_s) = -0.04$ (nominal parameters)



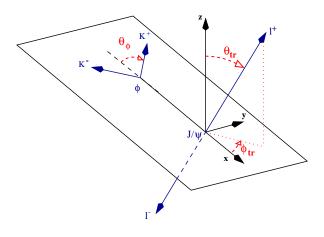
- **&** Dashed blue: $\mathcal{A}_{\mathrm{CP}}$ with $\omega=0$ and $\Delta\Gamma_s=0$
- ightarrow oscillation amplitude given by $A_{mix} = -\eta_f \sin(\phi_s)$

Physics Model: $B^0_s o J/\psi \phi$

- $ightharpoonup In \ B_s^0 o J/\psi \phi$, the final state f is an admixture of CP eigenstates
 - $rac{1}{2}\sigma$ $f=0,\parallel$: CP-even configuration, $\eta_f=+1$, $f=\perp$: CP-odd configuration, $\eta_f=-1$
- **Linear polarization amplitudes** corresponding to the different configurations are introduced (hep-ph/9804293, hep-ph/0012219): $A_f(t)$, for $f = 0, \parallel, \perp$
 - The fraction of CP-odd decays is defined as $R_T \equiv \left|A_{\perp}(0)\right|^2/\sum_{i=0,\parallel,\perp}\left|A_f(0)\right|^2 \sim \mathcal{O}(0.2)$
- Each of the $|A_f(t)|^2$ corresponds to an *ordinary* decay rate of a pure CP eigenstate for a $\bar{b} \to \bar{c}c\bar{s}$ transition (for a given η_f eigenvalue)
- $\ref{thm:properties}$ The one-angle $heta_{tr}$ distribution enables us to disentangle the different CP eigenstates

$$\frac{d\Gamma(t)}{d(\cos(\theta_{tr}))} \propto \left[|A_0(t)|^2 + |A_{\parallel}(t)|^2 \right] \frac{3}{8} (1 + \cos^2 \theta_{tr}) + |A_{\perp}(t)|^2 \frac{3}{4} \sin^2 \theta_{tr}$$

The transversity angle θ_{tr} corresponds to the angle between the positive lepton from the J/Ψ and the ϕ decay plane, in the J/Ψ rest frame



POLYTECHNIQUE ALE DE LAUSANNE Physics Model: $B_s^0 o D_s^- \pi^+$

- We The decay $B_s^0 \to D_s^- \pi^+$ is flavor specific in which a single tree diagram contributes
 - ΔB^0_s decays instantaneously as $f=D_s^-\pi^+$ and $\overline{B^0_s}$ instantaneously as $D_s^+\pi^-$
 - Δ No expected CP violation in $B_s^0 \to D_s^- \pi^+$
- lpha Analytical decay rates with a possible mistag probability ω

$$R_f(t) = R_{B_s^0 \to f}(t) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + (1 - 2\omega)\cos(\Delta M_s t) \right]$$

$$\overline{R}_f(t) = R_{\overline{B}_s^0 \to f}(t) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) - (1 - 2\omega)\cos(\Delta M_s t) \right]$$

 ${f \&}$ Observed flavor asymmetry ${\cal A}_f^{obs}$

$$\mathcal{A}_f^{obs}(t) = D \cdot \mathcal{A}_f^{th}(t)$$

with the theoretical flavor asymmetry \mathcal{A}_f^{th}

$$\mathcal{A}_f^{th}(t) \equiv \frac{\overline{R}_f(t) - R_f(t)}{\overline{R}_f(t) + R_f(t)} = -\frac{\cos(\Delta M_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2})}$$

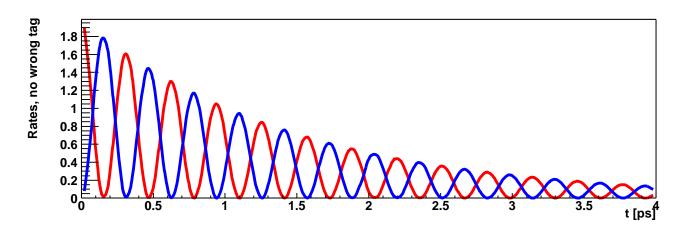
where the dilution factor D reduces to D=(1-2w) in case of a perfect resolution

 $extcolor{left}{\&} B_s^0 o D_s^- \pi^+$ allows the extraction of the parameters ΔM_s , $\Delta \Gamma_s$ and ω

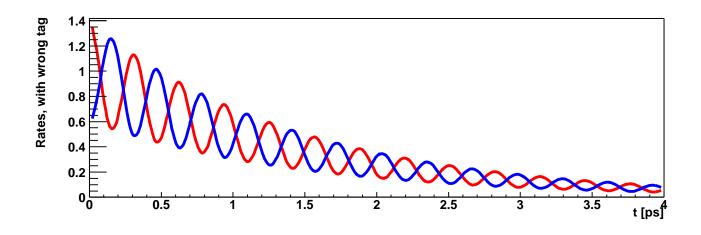
ECOLE POLYTECHNIQUE $B_s^0 o D_s^- \pi^+ \; Decay \; Rates$

 $B_s^0 \to D_s^- \pi^+$ decay rates $\Gamma(t)$ in case of a perfect resolution

- Rates \to Blue: initial pure $\overline{B_s^0}$, Red: initial pure B_s^0 , Dashed green: no tag ($\omega=0.5$)
- $\Delta M_s = 20 \mathrm{ps}^{-1}, \, \Delta \Gamma_s / \Gamma_s = 0.1$ (nominal parameters)



No wrong tag $\omega = 0$



With wrong tag $\omega = 0.3$

 $\rightarrow \omega \neq 0$: raise of $\overline{B_s^0}$ and B_s^0 starting points

 \rightarrow attenuation of the oscillations

Toy Monte Carlo Setup

For every signal channel, events are generated with the following physics parameters

$$\Delta M_s = 20 \text{ps}^{-1}$$

$$\Delta \Gamma_s / \Gamma_s = 0.1$$

$$1/\Gamma_s = 1.46 \text{ps}$$

$$\Rightarrow \sin(\phi_s) = -0.04$$

$$R_T = 0.2$$
, for $B_s^0 \to J/\psi \phi$

$$\Delta$$
 ω and ε_{tag} taken from the full MC, e.g. $\omega=30\%$ and $\varepsilon_{tag}=55\%$ for $B_s^0\to\eta_c\phi$

The sig/bkg probabilities were obtained using parameterizations from the full MC

Decay channel	N_s	B/S	Window $[{ m MeV}/c^2]$	$\sigma_{B_s^0} \; [{ m MeV}/c^2]$
$B_s^0 \to J/\Psi(\mu^+\mu^-)\phi(K^+K^-)$	100 k	0.3	± 50	15
$B_s^0 \to \eta_c(2\pi 2K, 4\pi)\phi(K^+K^-)$	3 k	8.0	± 45	13
$B_s^0 \to J/\Psi(\mu^+\mu^-)\eta(\gamma\gamma)$	7 k	1.6	±90	33
$B_s^0 o D_s^- \pi^+$	80 k	0.5	± 50	13

B/S: 90% CL upper limit on the background level from inclusive $b\bar{b}$ events (dominant source)

For each signal channel, 1000 toy experiments each corresponding to one year of data taking at LHCb are generated

Expected Sensitivities & Conclusions

Expected statistical precisions for one year of LHCb data taking (preliminary)

Sensitivity	$\sigma(\Delta M_s) [\mathrm{ps}^{-1}]$	$\sigma(\Delta\Gamma_s/\Gamma_s)$	$\sigma(\phi_s)$ [rad]
$B_s^0 \to J/\Psi(\mu^+\mu^-)\phi(K^+K^-)$	0.024	0.018	0.064
$B_s^0 \to \eta_c(2\pi 2K, 4\pi)\phi(K^+K^-)$	0.017	0.031	0.153
$B_s^0 \to J/\Psi(\mu^+\mu^-)\eta(\gamma\gamma)$	0.023	0.024	0.154
Combined ϕ_s sensitivity: $B_s^0 ightarrow r$	0.109		
Combined ϕ_s sensitivity: $B^0_s ightarrow a$	0.055		

 $\ref{eq:continuous}$ The following $\bar{b}\to\bar{c}c\bar{s}$ decays to pure CP eigenstates are currently under study at LHCb to increase the sensitivity to ϕ_s

$$\mbox{$\mbox{$\mbox{α}$}$} \ B_s^0 \rightarrow J/\Psi(\mu^+\mu^-)\eta(\pi^+\pi^-\pi^0)$$

$$A B_s^0 \to J/\Psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\eta(\gamma\gamma))$$

$$B_s^0 \to J/\Psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\gamma)$$

& Statistical sensitivity to ϕ_s after five years of LHCb data taking $\to \sigma(\phi_s) \sim 0.025$, with $\phi_s \sim \mathcal{O}(-0.04)$ in the SM

 \Rightarrow if ϕ_s (and/or ΔM_s) large compared to the SM expectation \to New Physics (SUSY, ...)