Sensitivities to the $B_s^0 - \overline{B_s^0}$ Mixing Parameters using $\bar{b} \rightarrow \bar{c}c\bar{s}$ Quark Transitions at LHCb

Luis Fernández
LPHE - EPF Lausanne

Neuchâtel, March 3rd, 2004
Swiss Physical Society Meeting

- $B_s^0 - \overline{B_s^0}$ Mixing
- Physics Motivations
- Likelihood, Physics Models
- Expected Sensitivities & Conclusions
The $B_s^0 \overline{B_s^0}$ system will serve to test the Standard Model (SM) description of CP violation, based on the CKM picture

✶ The \hat{V}_{CKM} matrix contains 4 independent weak phases $\beta^{(bd)} \equiv \beta_d$, $\gamma^{(bd)} \equiv \gamma_d$, $\beta^{(sd)} \equiv \chi'$ and $\beta^{(bs)} \equiv \beta_s \equiv \chi$

✶ These phases are in what we are interested in a CP-violating experiment

✶ The squashed (bs) triangle is relevant for the B_s^0 system

\[V_{ub}^*V_{us} + V_{cb}^*V_{cs} + V_{tb}^*V_{ts} = 0, \quad \beta^{(bs)} \equiv \arg \left(-V_{cb}V_{cs}^*/V_{tb}V_{ts}^* \right) \]

where $V_{tb}^*V_{ts}$ controls $B_s^0 - \overline{B_s^0}$ oscillations

✶ The $B_s^0 - \overline{B_s^0}$ weak mixing phase ϕ_s is expected to be small in the SM

\[\phi_s \equiv 2 \arg [V_{ts}^*V_{tb}] \approx -2\lambda^2 \eta \approx -2\chi \sim \mathcal{O}(-0.04) \]

where $\lambda \equiv \sin(\theta_C)$ and η are Wolfenstein's parameters
$b \rightarrow \bar{c}c\bar{s}$ Quark Transitions

- B_s^0 decays into CP self-conjugate final states caused by $b \rightarrow \bar{c}c\bar{s}$ quark-level transitions
- $B_s^0 \rightarrow J/\psi\phi$: admixture of CP eigenstates ($\eta_{J/\psi\phi} = +1, -1, +1$)
- $B_s^0 \rightarrow \eta_c\phi, B_s^0 \rightarrow J/\psi\eta(')$: pure CP-even eigenstates

Decays dominated by only one CKM phase

$$\arg[V_{cb}^* V_{cs}] \equiv -\phi_D$$ (penguin diagrams suppressed)

Due to the mixing, the flavor states $B_s^0\bar{B}_s^0$ can either remain unchanged and decay to f, or oscillate into each other, ...

- "Mixing-induced" CP violation arises from a phase mismatch (ϕ_{CKM}) between the weak mixing phase $\phi_s \equiv 2\arg[V_{ts}^* V_{tb}]$ and the tree phase $\phi_D \equiv \arg[V_{cb} V_{cs}^*]$

$$\phi_{CKM} = \phi_s - 2\phi_D \approx \phi_s \neq 0, \pi$$

- $\phi_s \approx -2\chi \leftrightarrow$ strange counterpart of $\sin(2\beta_d)$ measurement for B_d^0 ($\phi_d \approx 2\beta_d$)
The study of CP violation implies the measurement of the time-dependent decay asymmetry $A_{\text{CP}}^{\text{obs}}(t)$ between the \bar{B}_s^0 and the B_s^0

$$A_{\text{CP}}^{\text{obs}}(t) = \frac{R\left(\bar{B}_s^0(t) \to f\right) - R\left(B_s^0(t) \to f\right)}{R\left(B_s^0(t) \to f\right) + R\left(\bar{B}_s^0(t) \to f\right)}$$

with t the proper time, R the observed decay rates and $f = \bar{f}$

When a signal B is observed, we need to know the initial flavor of the reconstructed mesons ⇒ flavor tagging

- **opposite-side** tagging: identify the b-hadron containing the other b

- **same-side** tagging: use the companion of the b quark in the signal B

The tagging procedure does not always give an answer: tagging efficiency ε_{tag}

Even if there is a tag, our identification could be incorrect: wrong tag ω

⇒ The tagging will dilute the theoretical asymmetry $A_{\text{CP}}^{\text{th}}(t)$ with a factor D

$$A_{\text{CP}}^{\text{obs}}(t) = D \cdot A_{\text{CP}}^{\text{th}}(t)$$

which reduces to $D = (1 - 2\omega)$ for a perfect resolution and no background
Physics Motivations of $b \to c\bar{c}\bar{s}$ Transitions

- The mixing-induced CP asymmetry for a given CP eigenstate (with eigenvalue η_f) directly measures ϕ_s (tree phase $\phi_D \approx 0$)

$$A_{CP}^{th}(t) = \frac{-\eta_f \sin(\phi_s) \sin(\Delta M_s t)}{\cosh(\frac{\Delta \Gamma_s t}{2}) - \eta_f \cos(\phi_s) \sinh(\frac{\Delta \Gamma_s t}{2})}$$

where $\Delta M_s \equiv M_H - M_L$ and $\Delta \Gamma_s \equiv \Gamma_L - \Gamma_H$ are the mass and decay width differences of the physical (mass) eigenstates $|B_{L/H}\rangle = p |B_s^0\rangle \pm q |\bar{B_s^0}\rangle$

- Physics Motivations: measure the mixing parameters
 - extract $\Delta M_s \sim O(20)\,\text{ps}^{-1}$ and $\Delta \Gamma_s / \Gamma_s \sim O(10\%)$, with $\Gamma_s \equiv (\Gamma_H + \Gamma_L)/2$ the average decay width ($\tau_{B^0_s} = 1/\Gamma_s = 1.46\,\text{ps}$)
 - probe the $B^0_s - \bar{B}^0_s$ weak mixing phase ϕ_s, expected to be small in the SM $\sim O(-0.04)$

\Rightarrow B^0_s system represents a prime candidate for the discovery of New Physics

- SUSY contributions (mainly induced by gluino exchange) to the $B^0_s - \bar{B}^0_s$ transitions could drastically change the SM predictions (hep-ph/0311361):

$$\sin(\phi_s) \sim O(-1), \Delta M_s = (10 - 10^4)\,\text{ps}^{-1}$$
The sensitivities of LHCb to the CP B_s^0 observables are assessed by the use of fast toy Monte Carlo (MC) experiments using

- $B_s^0 \rightarrow J/\Psi(\mu^+\mu^-)\phi(K^+K^-)$
- $B_s^0 \rightarrow \eta_c(2\pi 2K, 4\pi)\phi(K^+K^-)$
- $B_s^0 \rightarrow J/\Psi(\mu^+\mu^-)\eta(\gamma\gamma)$

The parameterizations used are obtained from the study of fully simulated and reconstructed MC events (see talk of Benjamin Carron)

- The computed per-event lifetime error σ_t is used in the fast simulation such that an experimental uncertainty is assigned to each generated event
- The tagging efficiency ε_{tag} and the mistag probability ω are taken from the full MC

For $B_s^0 \rightarrow J/\psi\phi$, the so-called transversity angle θ_{tr} is introduced to take into account the angular distribution of the two vectors in the final state

Physics parameters: extracted using an “unbinned extended maximum” likelihood fit to the proper time and mass distributions (and to $\cos(\theta_{tr})$ for $J/\psi\phi$)

The fit is simultaneously maximized with the control sample $B_s^0 \rightarrow D_s^-\pi^+$ which allows the determination of ΔM_s, ω and $\Delta \Gamma_s$
Likelihood (1)

\[\mathcal{L} = \prod_{i \in B_0^s \rightarrow f} N_{\text{obs}}^i \left[f_{\text{sig}}(m^i) R_{\text{sig}}(t^i_{\text{rec}}, \sigma^i_t) + (1 - f_{\text{sig}}(m^i)) R_{\text{bkg}}(t^i_{\text{rec}}) \right] \]

- Sig and bkg probabilities \((f_{\text{sig}}, f_{\text{bkg}})\) of an event are based on its reconstructed mass
 - gaussian shape for the signal
 - exponential shape for the background

\(B_0^s \rightarrow \eta_c \phi \) mass distribution
 (with \(\mathcal{L} \) fit projection superimposed)

Annual yield = 3k
\(B/S = 0.8 \)
Mass resolution \(\sigma_{B_0^s} = 13\text{MeV}/c^2 \)
True \(B_0^s \) mass = 5369.6MeV/c^2
Bkg \(\mu_{\text{bkg}} = -0.6\text{MeV}/c^2 \)
Likelihood (2)

\[
\mathcal{L} = \prod_{i \in B^0_s \rightarrow f}^{N_{\text{obs}}} \left[f^{\text{sig}}(m^i) R^{\text{sig}}(t^i_{\text{rec}}, \sigma^i_t) + (1 - f^{\text{sig}}(m_i)) R^{\text{bkg}}(t^i_{\text{rec}}) \right]
\]

\[R^{\text{sig}}: \text{observed signal decay rate} \]

\[R^{\text{sig}}(t^i_{\text{rec}}, \sigma^i_t | \alpha) = A(t^i_{\text{true}}) \left[(1 - \omega) \Gamma_{B \rightarrow f}(t^i_{\text{true}}, \alpha) + \omega \Gamma_{\bar{B} \rightarrow f}(t^i_{\text{true}}, \bar{\alpha}) \right] \]

\[\otimes \text{Res}(t^i_{\text{rec}} - t^i_{\text{true}}, s^1 \sigma^i_t, \mu^1 \sigma^i_t) \]

\[\Gamma: \text{analytical decay rates} \]

\[\bar{\alpha} = (\Delta M_s, \Delta \Gamma_s, \ldots): \text{physics parameters} \]

\[\text{Res}: \text{Gaussian resolution scaled with } \sigma^i_t \]

\[A: \text{flat acceptance} \]

\[R^{\text{bkg}}: \text{background decay rate, exponential shape} \]

\[\text{For } B^0_s \rightarrow D^- \pi^+, \tau_{\text{bkg}} \approx \tau_{B^0_s}/2 \]

\[\text{For } B^0_s \rightarrow J/\psi \phi, \text{the signal likelihood is given by the sum of the CP-even and CP-odd components, including the corresponding } \theta_{\text{tr}} \text{ contribution} \]
$B_s^0 \rightarrow \eta_c \phi$ Proper Time – Full Monte Carlo Simulation

B_s^0 proper time τ resolution:

$\sigma \sim 33$ fs

$\tau = m_{B_s^0} \vec{p}_{B_s^0} \cdot \vec{L} / |\vec{p}_{B_s^0}|^2$

$\vec{L} = \vec{x}_S - \vec{x}_P$ decay length

Pull: ~ 1

σ_τ: computed per-event error on τ

using the tracks covariance matrices

Neuchâtel, March 3rd, 2004
Swiss Physical Society Meeting

Sensitivities to the $D_{s}^{0}-\bar{D}_{s}^{0}$ Mixing Parameters using $\bar{b} \rightarrow \bar{c}c\bar{s}$ Quark Transitions at LHCb (9)
Physics Model: $B_s^0 \rightarrow \eta_c \phi$, $B_s^0 \rightarrow J/\psi \eta$

- $f = \eta_c \phi, J/\psi \eta$ CP-even eigenstates: $(CP) |f\rangle = \eta_f |f\rangle$, $\eta_f = +1$

- Observed transition rates of initially pure B_s^0 and B_s^0 states (perfect resolution, no bkg)

\[
R \left(B_s^0(t) \rightarrow f \right) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \times \\
\left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - \eta_f \cos(\phi_s) \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) + D \eta_f \sin(\phi_s) \sin(\Delta M_s t) \right]
\]

\[
R \left(\overline{B_s^0}(t) \rightarrow f \right) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \times \\
\left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - \eta_f \cos(\phi_s) \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) - D \eta_f \sin(\phi_s) \sin(\Delta M_s t) \right]
\]

- $A_f(0) \equiv A \left(B_s^0 \rightarrow f \right)$: instantaneous decay amplitude

- $D = (1 - 2\omega)$: dilution factor

- We get the corresponding analytical transition rates Γ by setting $\omega = 0$ (i.e. no wrong tag) in the observed decay rates R
$B_s^0 \to \eta_c \phi$, $B_s^0 \to J/\psi \eta$ Decay Rates

Decay rates for $B_s^0 \to \eta_c \phi$ and $B_s^0 \to J/\psi \eta$ in case of a perfect resolution

- Blue: initial pure \overline{B}_s^0, Red: initial pure B_s^0
- $\Delta M_s = 20 \text{ps}^{-1}$, $\Delta \Gamma_s / \Gamma_s = 0.1$, $\sin(\phi_s) = -0.1$ (nominal $\sin(\phi_s) = -0.04$)

No wrong tag ω \to perfect tagging

With wrong tag $\omega = 0.3$ \to wiggles are flattened

Neuchâtel, March 3rd, 2004
Swiss Physical Society Meeting

Sensitivities to the $D_s^0 - \overline{D}_s^0$ Mixing Parameters using $\bar{b} \to \bar{c} s \bar{s}$ Quark Transitions at LHCb (11)

Luis Fernández
LPHE - EPF Lausanne
\(B_s^0 \rightarrow \eta_c\phi \), \(B_s^0 \rightarrow J/\psi\eta \): Asymmetry

Asymmetry \(A_{\text{CP}}(t) \) for \(B_s^0 \rightarrow \eta_c\phi \) and \(B_s^0 \rightarrow J/\psi\eta \) in case of a perfect resolution

- Solid green: \(A_{\text{CP}} \) with no mistag \(\omega=0 \)
- Dotted black: envelope due to non-zero \(\Delta \Gamma_s \)
- \(\Delta M_s = 20 \text{ps}^{-1} \), \(\Delta \Gamma_s / \Gamma_s = 0.1 \), \(\sin(\phi_s) = -0.04 \) (nominal parameters)

- Dashed blue: \(A_{\text{CP}} \) with \(\omega = 0 \) and \(\Delta \Gamma_s = 0 \)
- \(\rightarrow \) oscillation amplitude given by \(A_{\text{mix}} = -\eta_f \sin(\phi_s) \)

Neuchâtel, March 3rd, 2004
Swiss Physical Society Meeting

Sensitivities to the \(D_s^0-B_s^0 \) Mixing Parameters using \(\bar{b} \rightarrow \bar{c}\bar{c}\bar{s} \) Quark Transitions at LHCb (12)

Luis Fernández
LPHE - EPF Lausanne
Physics Model: $B^0_s \rightarrow J/\psi \phi$

- In $B^0_s \rightarrow J/\psi \phi$, the final state f is an admixture of CP eigenstates
 - $f = 0, ||$: CP-even configuration, $\eta_f = +1$
 - $f = \perp$: CP-odd configuration, $\eta_f = -1$
- Linear polarization amplitudes corresponding to the different configurations are introduced (hep-ph/9804293, hep-ph/0012219): $A_f(t)$, for $f = 0, ||, \perp$
- The fraction of CP-odd decays is defined as $R_T \equiv |A_{\perp}(0)|^2 / \sum_{i=0,||,\perp} |A_f(0)|^2 \sim O(0.2)$
- Each of the $|A_f(t)|^2$ corresponds to an ordinary decay rate of a pure CP eigenstate for a $\bar{b} \rightarrow \bar{c}c\bar{s}$ transition (for a given η_f eigenvalue)
- The one-angle θ_{tr} distribution enables us to disentangle the different CP eigenstates

$$\frac{d\Gamma(t)}{d(\cos(\theta_{tr}))} \propto \left[|A_0(t)|^2 + |A_{||}(t)|^2\right] \frac{3}{8} (1 + \cos^2 \theta_{tr}) + |A_{\perp}(t)|^2 \frac{3}{4} \sin^2 \theta_{tr}$$

The transversity angle θ_{tr} corresponds to the angle between the positive lepton from the J/Ψ and the ϕ decay plane, in the J/Ψ rest frame.
Physics Model: $B^0_s \rightarrow D^{-}_s \pi^+$

- The decay $B^0_s \rightarrow D^{-}_s \pi^+$ is flavor specific in which a single tree diagram contributes
 - B^0_s decays instantaneously as $f = D^{-}_s \pi^+$ and \bar{B}^0_s instantaneously as $D^+ D^-$
 - No expected CP violation in $B^0_s \rightarrow D^{-}_s \pi^+$
- Analytical decay rates with a possible mistag probability ω

$$
R_f(t) = R_{B^0_s \rightarrow f}(t) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) + (1 - 2\omega) \cos (\Delta M_s t) \right]
$$

$$
\bar{R}_f(t) = R_{\bar{B}^0_s \rightarrow f}(t) = |A_f(0)|^2 \frac{e^{-\Gamma_s t}}{2} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - (1 - 2\omega) \cos (\Delta M_s t) \right]
$$

- Observed flavor asymmetry A^{obs}_f

$$
A^{obs}_f(t) = D \cdot A^{th}_f(t)
$$

with the theoretical flavor asymmetry A^{th}_f

$$
A^{th}_f(t) \equiv \frac{\bar{R}_f(t) - R_f(t)}{\bar{R}_f(t) + R_f(t)} = -\frac{\cos (\Delta M_s t)}{\cosh \left(\frac{\Delta \Gamma_s t}{2} \right)}
$$

where the dilution factor D reduces to $D = (1 - 2\omega)$ in case of a perfect resolution
- $B^0_s \rightarrow D^{-}_s \pi^+$ allows the extraction of the parameters ΔM_s, $\Delta \Gamma_s$ and ω
$B_s^0 \rightarrow D_s^-\pi^+$ Decay Rates

$B_s^0 \rightarrow D_s^-\pi^+$ decay rates $\Gamma(t)$ in case of a perfect resolution

- Rates → Blue: initial pure \overline{B}_s^0, Red: initial pure B_s^0, Dashed green: no tag ($\omega = 0.5$)
- $\Delta M_s = 20\text{ps}^{-1}$, $\Delta \Gamma_s/\Gamma_s = 0.1$ (nominal parameters)

No wrong tag $\omega = 0$

With wrong tag $\omega = 0.3$

$\rightarrow \omega \neq 0$: raise of \overline{B}_s^0 and B_s^0 starting points
\rightarrow attenuation of the oscillations
Toy Monte Carlo Setup

For every signal channel, events are generated with the following physics parameters:

- $\Delta M_s = 20 \text{ps}^{-1}$
- $\Delta \Gamma_s / \Gamma_s = 0.1$
- $1 / \Gamma_s = 1.46 \text{ps}$
- $\sin(\phi_s) = -0.04$
- $R_T = 0.2$, for $B_s^0 \to J/\psi \phi$
- ω and ε_{tag} taken from the full MC, e.g. $\omega = 30\%$ and $\varepsilon_{\text{tag}} = 55\%$ for $B_s^0 \to \eta_c \phi$

The sig/bkg probabilities were obtained using parameterizations from the full MC.

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>N_s</th>
<th>B/S</th>
<th>Window [MeV/c^2]</th>
<th>$\sigma_{B_s^0}$ [MeV/c^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s^0 \to J/\Psi (\mu^+ \mu^-) \phi (K^+ K^-)$</td>
<td>100 k</td>
<td>0.3</td>
<td>± 50</td>
<td>15</td>
</tr>
<tr>
<td>$B_s^0 \to \eta_c (2\pi 2K, 4\pi) \phi (K^+ K^-)$</td>
<td>3 k</td>
<td>0.8</td>
<td>± 45</td>
<td>13</td>
</tr>
<tr>
<td>$B_s^0 \to J/\Psi (\mu^+ \mu^-) \eta (\gamma \gamma)$</td>
<td>7 k</td>
<td>1.6</td>
<td>± 90</td>
<td>33</td>
</tr>
<tr>
<td>$B_s^0 \to D_s^- \pi^+$</td>
<td>80 k</td>
<td>0.5</td>
<td>± 50</td>
<td>13</td>
</tr>
</tbody>
</table>

B/S: 90% CL upper limit on the background level from inclusive $b\bar{b}$ events (dominant source)

For each signal channel, 1000 toy experiments each corresponding to one year of data taking at LHCb are generated.
Expected Sensitivities & Conclusions

Expected statistical precisions for one year of LHCb data taking (preliminary)

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>$\sigma(\Delta M_s)$ [ps$^{-1}$]</th>
<th>$\sigma(\Delta \Gamma_s/\Gamma_s)$</th>
<th>$\sigma(\phi_s)$ [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0_s \to J/\Psi(\mu^+\mu^-)\phi(K^+K^-)$</td>
<td>0.024</td>
<td>0.018</td>
<td>0.064</td>
</tr>
<tr>
<td>$B^0_s \to \eta_c(2\pi 2K, 4\pi)\phi(K^+K^-)$</td>
<td>0.017</td>
<td>0.031</td>
<td>0.153</td>
</tr>
<tr>
<td>$B^0_s \to J/\Psi(\mu^+\mu^-)\eta(\gamma\gamma)$</td>
<td>0.023</td>
<td>0.024</td>
<td>0.154</td>
</tr>
</tbody>
</table>

Combined ϕ_s sensitivity: $B^0_s \to \eta_c\phi$, $B^0_s \to J/\psi\eta$ 0.109

Combined ϕ_s sensitivity: $B^0_s \to \eta_c\phi$, $B^0_s \to J/\psi\eta$, $B^0_s \to J/\psi\phi$ 0.055

The following $\bar{b} \to \bar{c}c\bar{s}$ decays to pure CP eigenstates are currently under study at LHCb to increase the sensitivity to ϕ_s

\star $B^0_s \to J/\Psi(\mu^+\mu^-)\eta(\pi^+\pi^-\pi^0)$

\star $B^0_s \to J/\Psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\eta(\gamma\gamma))$

\star $B^0_s \to J/\Psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\gamma)$

Statistical sensitivity to ϕ_s after five years of LHCb data taking

$\to \sigma(\phi_s) \sim 0.025$, with $\phi_s \sim \mathcal{O}(-0.04)$ in the SM

\star if ϕ_s (and/or ΔM_s) large compared to the SM expectation \to New Physics (SUSY, ...)

Neuchâtel, March 3rd, 2004
Swiss Physical Society Meeting

Sensitivities to the $D^0_s-\bar{D}^0_s$ Mixing Parameters using $\bar{b} \to \bar{c}c\bar{s}$ Quark Transitions at LHCb (17)

Luis Fernández
LPHE - EPF Lausanne